Simulation of groundwater conditions in the upper San Pedro basin for the evaluation of alternative futures
Author
Goode, Tomas CharlesIssue Date
2000Advisor
Maddock III, Thomas
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
The creation of the groundwater model of the Upper San Pedro Basin included two developmental phases: the creation of a conceptual and numerical model. The creation of the conceptual model was accomplished through the utilization of Geographic Information System (GIS) software, namely Arc View, used primarily to view and create point, line, and polygonal shapes. The creation of a numerical model was accomplished by the infusion of the conceptual model into a 3D finite difference grid used in MODFLOW groundwater software from the U.S. Geological Survey. MODFLOW computes the hydraulic head (water level) for each cell within the grid. The infusion of the two models ( conceptual and numerical) was allowed through the use of Department of Defense Groundwater Modeling System (GMS) software. The time period for groundwater modeling began with predevelopment conditions, or "steady state." Steady state conditions were assumed to exist in 1940. The steady state was used as the initial condition for the subsequent transient analysis. The transient simulation applied historical and current information of pumping stresses to the system from 1940 to 1997. After modeling current conditions, Alternative Futures' scenarios were simulated by modifying current stresses and by adding new ones. The possible future impacts of to the hydro logic system were then evaluated.Type
textThesis-Reproduction (electronic)
Degree Name
M.S.Degree Level
mastersDegree Program
Graduate CollegeHydrology and Water Resources