HIGH-PRECISION MOTION ESTIMATION SYSTEMS FOR UUV NAVIGATION
dc.contributor.author | Lee, Hua | |
dc.contributor.author | Radzicki, Vincent | |
dc.date.accessioned | 2018-03-02T17:39:35Z | |
dc.date.available | 2018-03-02T17:39:35Z | |
dc.date.issued | 2017-10 | |
dc.identifier.issn | 0884-5123 | |
dc.identifier.issn | 0074-9079 | |
dc.identifier.uri | http://hdl.handle.net/10150/626944 | |
dc.description.abstract | This paper is the summary of a sequence of research tasks in the area of 3D bearing-angle estimation for UUV homing and docking exercises. The main focus is to simplify the concept as well as computation efficiency of the homing and docking tasks, by elevating the estimation modality from the conventional twin-receiver configuration to the 2D circular arrays. The objective is to utilize the multi-element receiver array for the entire navigation procedure, including bearing-angle estimation, optimal path planning, and high-precision docking. | |
dc.description.sponsorship | International Foundation for Telemetering | en |
dc.language.iso | en_US | en |
dc.publisher | International Foundation for Telemetering | en |
dc.relation.url | http://www.telemetry.org/ | en |
dc.rights | Copyright © held by the author; distribution rights International Foundation for Telemetering | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.title | HIGH-PRECISION MOTION ESTIMATION SYSTEMS FOR UUV NAVIGATION | en_US |
dc.type | text | en |
dc.type | Proceedings | en |
dc.contributor.department | UCSB, Dept Electrical & Comp. Eng. | en |
dc.identifier.journal | International Telemetering Conference Proceedings | en |
dc.description.collectioninformation | Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection. | |
refterms.dateFOA | 2018-09-13T20:29:08Z | |
html.description.abstract | This paper is the summary of a sequence of research tasks in the area of 3D bearing-angle estimation for UUV homing and docking exercises. The main focus is to simplify the concept as well as computation efficiency of the homing and docking tasks, by elevating the estimation modality from the conventional twin-receiver configuration to the 2D circular arrays. The objective is to utilize the multi-element receiver array for the entire navigation procedure, including bearing-angle estimation, optimal path planning, and high-precision docking. |