We are upgrading the repository! We will continue our upgrade in February 2025 - we have taken a break from the upgrade to open some collections for end-of-semester submission. The MS-GIST Master's Reports, SBE Senior Capstones, IPLP dissertations, and UA Faculty Publications collections are currently open for submission. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available in another collection.

Show simple item record

dc.contributor.advisorKosbar, Kurten
dc.contributor.authorKitchen, Seth
dc.contributor.authorKlinger, Daniel
dc.date.accessioned2018-03-02T19:02:24Z
dc.date.available2018-03-02T19:02:24Z
dc.date.issued2017-10
dc.identifier.issn0884-5123
dc.identifier.issn0074-9079
dc.identifier.urihttp://hdl.handle.net/10150/626955
dc.description.abstractThis paper describes a telemetry system for a high-powered rocket entered in the Intercollegiate Rocket Engineering Competition hosted by the Experimental Sounding Rocket Association. On-board the rocket GPS coordinates,acceleration, magnetic field and lux readings are collected,along with other data. The data is sent between internal systems using commercial Internet-of-Things boards that utilize IEEE 802.11 wireless protocols. The aggregated data is transmitted to a ground station through a monopole transmitting antenna and custom designed helical receiving antenna such that in the event of a crash, data is not lost. The ground station data recovery is performed using a commercial XBee transceiver, before being displayed in real time for tracking and safety purposes,and stored for future data analysis. The target apogee is 9 km, so real time GPS data will be useful for both tracking and vehicle recovery operations.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.titleTELEMETRY SYSTEM FOR INTERCOLLEGIATE ROCKET ENGINEERING COMPETITION VEHICLEen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentTelemetry Learning Center Department of Electrical and Computer Engineering Missouri University of Science and Technologyen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
refterms.dateFOA2018-08-13T17:45:04Z
html.description.abstractThis paper describes a telemetry system for a high-powered rocket entered in the Intercollegiate Rocket Engineering Competition hosted by the Experimental Sounding Rocket Association. On-board the rocket GPS coordinates,acceleration, magnetic field and lux readings are collected,along with other data. The data is sent between internal systems using commercial Internet-of-Things boards that utilize IEEE 802.11 wireless protocols. The aggregated data is transmitted to a ground station through a monopole transmitting antenna and custom designed helical receiving antenna such that in the event of a crash, data is not lost. The ground station data recovery is performed using a commercial XBee transceiver, before being displayed in real time for tracking and safety purposes,and stored for future data analysis. The target apogee is 9 km, so real time GPS data will be useful for both tracking and vehicle recovery operations.


Files in this item

Thumbnail
Name:
ITC_2017_17-03-01.pdf
Size:
1.338Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record