3D LOCALIZATION FOR LAUNCH VEHICLE USING COMBINED TOA AND AOA
dc.contributor.advisor | Flight Tracking Technology Team, Naro Space Center, Korea Aerospace Research Institute | en |
dc.contributor.advisor | Department of Electronics and Computer Engineering, Chonnam National University | en |
dc.contributor.author | Kwon, Soonho | |
dc.contributor.author | Kim, Donghyun | |
dc.contributor.author | Han, Jeongwoo | |
dc.contributor.author | Kim, Dae-Oh | |
dc.contributor.author | Hwang, Intae | |
dc.date.accessioned | 2018-03-02T19:17:56Z | |
dc.date.available | 2018-03-02T19:17:56Z | |
dc.date.issued | 2017-10 | |
dc.identifier.issn | 0884-5123 | |
dc.identifier.issn | 0074-9079 | |
dc.identifier.uri | http://hdl.handle.net/10150/626957 | |
dc.description.abstract | Generally, a ground telemetry station for launch vehicle (LV) has tracking function only; therefore, position measurements depend on radar. Time of arrival (TOA) and angle of arrival (AOA) are typical location techniques for emitting targets. In this paper, we propose a Combined TOA and AOA localization method for LV using two ground stations. When transmitter (Tx) time is not known, it is necessary to make virtual onboard timer for TOA estimation. The virtual onboard timer generates time stamps of streaming frame according to data rate. First station which is located in space center has no tracking function. But it can generate the virtual onboard timer. Second station has tracking function, so it generates AOA information. By solving sphere equation(s) of TOA from at least one station and a line equation of AOA, target position in three-dimensions (3D) can be obtained. We confirm the localization performance by means of comparison with an on-board GPS of a real launch mission. | |
dc.description.sponsorship | International Foundation for Telemetering | en |
dc.language.iso | en_US | en |
dc.publisher | International Foundation for Telemetering | en |
dc.relation.url | http://www.telemetry.org/ | en |
dc.rights | Copyright © held by the author; distribution rights International Foundation for Telemetering | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | AOA | en |
dc.subject | Ground Telemetry Station | en |
dc.subject | Launch Vehicle | en |
dc.subject | Localization | en |
dc.subject | TOA | en |
dc.title | 3D LOCALIZATION FOR LAUNCH VEHICLE USING COMBINED TOA AND AOA | en_US |
dc.type | text | en |
dc.type | Proceedings | en |
dc.identifier.journal | International Telemetering Conference Proceedings | en |
dc.description.collectioninformation | Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection. | |
refterms.dateFOA | 2018-07-02T16:50:17Z | |
html.description.abstract | Generally, a ground telemetry station for launch vehicle (LV) has tracking function only; therefore, position measurements depend on radar. Time of arrival (TOA) and angle of arrival (AOA) are typical location techniques for emitting targets. In this paper, we propose a Combined TOA and AOA localization method for LV using two ground stations. When transmitter (Tx) time is not known, it is necessary to make virtual onboard timer for TOA estimation. The virtual onboard timer generates time stamps of streaming frame according to data rate. First station which is located in space center has no tracking function. But it can generate the virtual onboard timer. Second station has tracking function, so it generates AOA information. By solving sphere equation(s) of TOA from at least one station and a line equation of AOA, target position in three-dimensions (3D) can be obtained. We confirm the localization performance by means of comparison with an on-board GPS of a real launch mission. |