Show simple item record

dc.contributor.authorAfran, Md. Shah
dc.contributor.authorSaquib, Mohammad
dc.contributor.authorRice, Michael
dc.date.accessioned2018-03-02T20:02:19Z
dc.date.available2018-03-02T20:02:19Z
dc.date.issued2017-10
dc.identifier.issn0884-5123
dc.identifier.issn0074-9079
dc.identifier.urihttp://hdl.handle.net/10150/626962
dc.description.abstractThis paper investigates the performance of sparse minimum mean squared error (MMSE) equalizer for generalized time-reversed space-time block codes (GTR-STBC) in aeronautical telemetry. GTR-STBC equipped with MMSE equalizer performs the best trade-off between the signal-tonoise ratio and inter-symbol interference by allocating unequal power over aeronautical telemetry channels. However, aeronautical telemetry channels are in general consists of larger delay spreads which make the MMSE equalization of aeronautical channels with GTR-STBC computationally complex. Interestingly enough, in spite of larger delays aeronautical channels are made of few sparsely distributed multipaths and therefore their MMSE equalizers are highly compressible. In this paper, compressed sensing based greedy algorithm is used for the design of sparse MMSE equalizer and a convex curve-fitting algorithm is used to find the sub-optimum power allocation parameter at the same sparsity level for GTR-STBC. Our simulation results show that 75-90% of the non-zero equalizer taps can be reduced with a slight relaxation of the mean-squared error (or equivalentlyslight degradationof bit-errorrate performance). It isalso observedthat the optimum transmitter power profile for the sparse MMSE equalizer is different than that of the non-sparse equalizer.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.titleSPARSE MMSE EQUALIZER FOR GTR-STBC IN AERONAUTICAL TELEMETRYen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentThe University of Texas at Dallasen
dc.contributor.departmentBrigham Young Universityen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
refterms.dateFOA2018-06-23T21:28:57Z
html.description.abstractThis paper investigates the performance of sparse minimum mean squared error (MMSE) equalizer for generalized time-reversed space-time block codes (GTR-STBC) in aeronautical telemetry. GTR-STBC equipped with MMSE equalizer performs the best trade-off between the signal-tonoise ratio and inter-symbol interference by allocating unequal power over aeronautical telemetry channels. However, aeronautical telemetry channels are in general consists of larger delay spreads which make the MMSE equalization of aeronautical channels with GTR-STBC computationally complex. Interestingly enough, in spite of larger delays aeronautical channels are made of few sparsely distributed multipaths and therefore their MMSE equalizers are highly compressible. In this paper, compressed sensing based greedy algorithm is used for the design of sparse MMSE equalizer and a convex curve-fitting algorithm is used to find the sub-optimum power allocation parameter at the same sparsity level for GTR-STBC. Our simulation results show that 75-90% of the non-zero equalizer taps can be reduced with a slight relaxation of the mean-squared error (or equivalentlyslight degradationof bit-errorrate performance). It isalso observedthat the optimum transmitter power profile for the sparse MMSE equalizer is different than that of the non-sparse equalizer.


Files in this item

Thumbnail
Name:
ITC_2017_17-04-02.pdf
Size:
455.3Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record