Show simple item record

dc.contributor.advisorKosbar, Kurten
dc.contributor.authorSchad, Judah
dc.contributor.authorNichols, Cameron
dc.contributor.authorBrinker, Katelyn
dc.date.accessioned2018-03-05T18:49:23Z
dc.date.available2018-03-05T18:49:23Z
dc.date.issued2017-10
dc.identifier.issn0884-5123
dc.identifier.issn0074-9079
dc.identifier.urihttp://hdl.handle.net/10150/627008
dc.description.abstractThis paper discusses a permanent magnet synchronous motor (PMSM) variable frequency drive (VFD) system developed for an all-terrain Wifi-HaLow connected (802.11ah, 900 MHz) modular electric vehicle that competed in the Mars University Rover Challenge (URC). The quadrature axis flux linkage for each motor was estimated using on-board voltage and current measurements. A synchronous control algorithm tracked the electromagnetic operating parameters, which are highly dependent on variations in motor construction and load conditions. A feed-forward model-driven observer solution calculated flux linkage angles by direct-quadrature-zero transformation of three-phase shunt currents using DSP processors.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.titlePermanent Magnet Synchronous Motor Variable Frequency Drive Systemen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentMissouri University of Science and Technologyen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
refterms.dateFOA2018-08-19T15:36:01Z
html.description.abstractThis paper discusses a permanent magnet synchronous motor (PMSM) variable frequency drive (VFD) system developed for an all-terrain Wifi-HaLow connected (802.11ah, 900 MHz) modular electric vehicle that competed in the Mars University Rover Challenge (URC). The quadrature axis flux linkage for each motor was estimated using on-board voltage and current measurements. A synchronous control algorithm tracked the electromagnetic operating parameters, which are highly dependent on variations in motor construction and load conditions. A feed-forward model-driven observer solution calculated flux linkage angles by direct-quadrature-zero transformation of three-phase shunt currents using DSP processors.


Files in this item

Thumbnail
Name:
ITC_2017_17-14-04.pdf
Size:
156.6Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record