• Login
    View Item 
    •   Home
    • Conference Proceedings
    • International Telemetering Conference
    • International Telemetering Conference Proceedings, Volume 53 (2017)
    • View Item
    •   Home
    • Conference Proceedings
    • International Telemetering Conference
    • International Telemetering Conference Proceedings, Volume 53 (2017)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    NEAR-FIELD HOMING AND GUIDANCE PLANNING FOR AUTONOMOUS NAVIGATION SYSTEMS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    ITC_2017_17-16-04.pdf
    Size:
    1.169Mb
    Format:
    PDF
    Download
    Author
    Radzicki, Vincent R.
    Rhajagopal, Abhejit
    Advisor
    Lee, Hua
    Affiliation
    UCSB, Dept Electrical & Comp. Eng.
    Issue Date
    2017-10
    
    Metadata
    Show full item record
    Rights
    Copyright © held by the author; distribution rights International Foundation for Telemetering
    Collection Information
    Proceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.
    Publisher
    International Foundation for Telemetering
    Journal
    International Telemetering Conference Proceedings
    Abstract
    Advances in planning and controls algorithms for Unmanned Autonomous Vehicles (UAVs) have led to a substantial increase in a wide variety of applications. An important task for UAVs is au-tomated high-precision homing-and-docking. This requires the UAV to autonomously estimate its relative bearing to the home docking station and plan its optimal approach accordingly. This paper presents the design of homing and navigation system for UAVs that can operate in near-field scenarios. The system incorporates a dual-transmitter/receiver design and through a modified angle of arrival and motion estimation routine, the UAV can determine its relative bearing to the homing station while simultaneously planning the optimal approach. The approach planning algorithm will be described, along with theoretical analysis and simulated results documenting its performance in comparison to other techniques.
    Sponsors
    International Foundation for Telemetering
    ISSN
    0884-5123
    0074-9079
    Additional Links
    http://www.telemetry.org/
    Collections
    International Telemetering Conference Proceedings, Volume 53 (2017)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.