Giant magneto-spin-Seebeck effect and magnon transfer torques in insulating spin valves
Publisher
AMER INST PHYSICSCitation
Giant magneto-spin-Seebeck effect and magnon transfer torques in insulating spin valves 2018, 112 (5):052405 Applied Physics LettersJournal
Applied Physics LettersRights
Rights managed by AIP Publishing.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We theoretically study magnon transport in an insulating spin valve (ISV) made of an antiferromagnetic insulator sandwiched between two ferromagnetic insulator (FI) layers. In the conventional metal-based spin valve, the electron spins propagate between two metallic ferromagnetic layers, giving rise to giant magnetoresistance and spin transfer torque. Here, the incoherent magnons in the ISV serve as angular momentum carriers and are responsible for the angular momentum transport between two FI layers across the antiferromagnetic spacer. We predict two transport phenomena in the presence of the temperature gradient: a giant magneto-spin-Seebeck effect in which the output voltage signal is controlled by the relative orientation of the two FI layers and magnon transfer torque that can be used for switching the magnetization of the FI layers with a temperature gradient of the order of 0.1 Kelvin per nanometer. Published by AIP Publishing.Note
12 month embargo; published online: 31 January 2018ISSN
0003-69511077-3118
Version
Final published versionSponsors
U.S. National Science Foundation [ECCS-1708180]Additional Links
http://aip.scitation.org/doi/10.1063/1.5018411ae974a485f413a2113503eed53cd6c53
10.1063/1.5018411