Discovery of stimulator binding to a conserved pocket in the heme domain of soluble guanylyl cyclase
Name:
J.Biol.Chem.-2018-Wales-1850-64.pdf
Size:
2.260Mb
Format:
PDF
Description:
Final Published Version
Author
Wales, Jessica A.Chen, Cheng-Yu
Breci, Linda
Weichsel, Andrzej
Bernier, Sylvie G.
Sheppeck, James E.
Solinga, Robert
Nakai, Takashi
Renhowe, Paul A.
Jung, Joon
Montfort, William R.
Affiliation
Univ Arizona, Dept Chem & BiochemIssue Date
2018-02-02Keywords
guanylate cyclase (guanylyl cyclase)nitric oxide
protein-drug interaction
photoaffinity labeling
mass spectrometry (MS)
nuclear magnetic resonance (NMR)
Metadata
Show full item recordCitation
Discovery of stimulator binding to a conserved pocket in the heme domain of soluble guanylyl cyclase 2018, 293 (5):1850 Journal of Biological ChemistryJournal
Journal of Biological ChemistryRights
© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Soluble guanylyl cyclase (sGC) is the receptor for nitric oxide and a highly sought-after therapeutic target for the management of cardiovascular diseases. New compounds that stimulate sGC show clinical promise, but where these stimulator compounds bind and how they function remains unknown. Here, using a photolyzable diazirine derivative of a novel stimulator compound, IWP-051, and MS analysis, we localized drug binding to the 1 heme domain of sGC proteins from the hawkmoth Manduca sexta and from human. Covalent attachments to the stimulator were also identified in bacterial homologs of the sGC heme domain, referred to as H-NOX domains, including those from Nostoc sp. PCC 7120, Shewanella oneidensis, Shewanella woodyi, and Clostridium botulinum, indicating that the binding site is highly conserved. The identification of photoaffinity-labeled peptides was aided by a signature MS fragmentation pattern of general applicability for unequivocal identification of covalently attached compounds. Using NMR, we also examined stimulator binding to sGC from M. sexta and bacterial H-NOX homologs. These data indicated that stimulators bind to a conserved cleft between two subdomains in the sGC heme domain. L12W/T48W substitutions within the binding pocket resulted in a 9-fold decrease in drug response, suggesting that the bulkier tryptophan residues directly block stimulator binding. The localization of stimulator binding to the sGC heme domain reported here resolves the longstanding question of where stimulators bind and provides a path forward for drug discovery.Note
12 month embargo; published online: 8 December 2017ISSN
0021-92581083-351X
PubMed ID
29222330Version
Final published versionSponsors
National Institutes of Health from NIEHS [ES06694]; National Institutes of Health from NCI [CA023074]; BIO5 Institute of the University of Arizona; National Institutes of Health from the National Center for Research Resources (NCRR) [1S10 RR028868-01]; National Institutes of Health from NIGMS [P41GM103399, P41RR002301]; University of Wisconsin-Madison; National Institutes of Health [P41GM103399, S10RR02781, S10RR08438, S10RR023438, S10RR025062, S10RR029220]; National Science Foundation [DMB-8415048, OIA-9977486, BIR-9214394]; U.S. Department of AgricultureAdditional Links
http://www.jbc.org/lookup/doi/10.1074/jbc.RA117.000457ae974a485f413a2113503eed53cd6c53
10.1074/jbc.RA117.000457
Scopus Count
Collections
Related articles
- Solution structures of the Shewanella woodyi H-NOX protein in the presence and absence of soluble guanylyl cyclase stimulator IWP-051.
- Authors: Chen CY, Lee W, Renhowe PA, Jung J, Montfort WR
- Issue date: 2021 Feb
- Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor.
- Authors: Montfort WR, Wales JA, Weichsel A
- Issue date: 2017 Jan 20
- (1)H, (13)C, (15)N backbone and side-chain resonance assignment of Nostoc sp. C139A variant of the heme-nitric oxide/oxygen binding (H-NOX) domain.
- Authors: Alexandropoulos II, Argyriou AI, Marousis KD, Topouzis S, Papapetropoulos A, Spyroulias GA
- Issue date: 2016 Oct
- Gaseous ligand selectivity of the H-NOX sensor protein from Shewanella oneidensis and comparison to those of other bacterial H-NOXs and soluble guanylyl cyclase.
- Authors: Wu G, Liu W, Berka V, Tsai AL
- Issue date: 2017 Sep
- YC-1 binding to the β subunit of soluble guanylyl cyclase overcomes allosteric inhibition by the α subunit.
- Authors: Purohit R, Fritz BG, The J, Issaian A, Weichsel A, David CL, Campbell E, Hausrath AC, Rassouli-Taylor L, Garcin ED, Gage MJ, Montfort WR
- Issue date: 2014 Jan 14