Show simple item record

dc.contributor.authorCowley, M. J.
dc.contributor.authorSpitler, L. R.
dc.contributor.authorQuadri, R. F.
dc.contributor.authorGoulding, A. D.
dc.contributor.authorPapovich, C.
dc.contributor.authorTran, K. V. H.
dc.contributor.authorLabbé, I.
dc.contributor.authorAlcorn, L.
dc.contributor.authorAllen, R. J.
dc.contributor.authorForrest, B.
dc.contributor.authorGlazebrook, K.
dc.contributor.authorKacprzak, G. G.
dc.contributor.authorMorrison, G.
dc.contributor.authorNanayakkara, T.
dc.contributor.authorStraatman, C. M. S.
dc.contributor.authorTomczak, A. R.
dc.date.accessioned2018-03-15T22:53:44Z
dc.date.available2018-03-15T22:53:44Z
dc.date.issued2018-01
dc.identifier.citationDecoupled black hole accretion and quenching: the relationship between BHAR, SFR and quenching in Milky Way- and Andromeda-mass progenitors since z = 2.5 2018, 473 (3):3710 Monthly Notices of the Royal Astronomical Societyen
dc.identifier.issn0035-8711
dc.identifier.issn1365-2966
dc.identifier.doi10.1093/mnras/stx2587
dc.identifier.urihttp://hdl.handle.net/10150/627058
dc.description.abstractWe investigate the relationship between the black hole accretion rate (BHAR) and star formation rate (SFR) for Milky Way (MW) and Andromeda (M31)-mass progenitors from z = 0.2 to 2.5. We source galaxies from the K-s-band-selected ZFOURGE survey, which includes multiwavelength data spanning 0.3-160 mu m. We use decomposition software to split the observed spectral energy distributions (SEDs) of our galaxies into their active galactic nuclei (AGNs) and star-forming components, which allows us to estimate BHARs and SFRs from the infrared (IR). We perform tests to check the robustness of these estimates, including a comparison with BHARs and SFRs derived from X-ray stacking and far-IR analysis, respectively. We find that, as the progenitors evolve their relative black hole-galaxy growth (i.e. their BHAR/SFR ratio) increases from low to high redshift. The MW-mass progenitors exhibit a log-log slope of 0.64 +/- 0.11, while the M31-mass progenitors are 0.39 +/- 0.08. This result contrasts with previous studies that find an almost flat slope when adopting X-ray-/AGN-selected or mass-limited samples and is likely due to their use of a broad mixture of galaxies with different evolutionary histories. Our use of progenitor-matched samples highlights the potential importance of carefully selecting progenitors when searching for evolutionary relationships between BHAR/SFRs. Additionally, our finding that BHAR/SFR ratios do not track the rate at which progenitors quench casts doubts over the idea that the suppression of star formation is predominantly driven by luminous AGN feedback (i.e. high BHARs).
dc.description.sponsorshipNational Collaborative Research Infrastructure Strategy of the Australian Federal Government; NASA [NAS5-26555]; ESA; NASA; Chandra X-ray Observatory; Australian Astronomical Observatory; Australian Research Council [DP1094370, DP130101460, DP130101667, FT140100933]; Texas AM University; George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomyen
dc.language.isoenen
dc.publisherOXFORD UNIV PRESSen
dc.relation.urlhttp://academic.oup.com/mnras/article/473/3/3710/4411817en
dc.rights© 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Societyen
dc.subjectgalaxies: activeen
dc.subjectgalaxies: evolutionen
dc.subjectgalaxies: high-redshiften
dc.subjectinfrared: galaxiesen
dc.titleDecoupled black hole accretion and quenching: the relationship between BHAR, SFR and quenching in Milky Way- and Andromeda-mass progenitors since z = 2.5en
dc.typeArticleen
dc.contributor.departmentUniv Arizona, LBT Observen
dc.identifier.journalMonthly Notices of the Royal Astronomical Societyen
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en
dc.eprint.versionFinal published versionen
refterms.dateFOA2018-09-13T22:41:23Z
html.description.abstractWe investigate the relationship between the black hole accretion rate (BHAR) and star formation rate (SFR) for Milky Way (MW) and Andromeda (M31)-mass progenitors from z = 0.2 to 2.5. We source galaxies from the K-s-band-selected ZFOURGE survey, which includes multiwavelength data spanning 0.3-160 mu m. We use decomposition software to split the observed spectral energy distributions (SEDs) of our galaxies into their active galactic nuclei (AGNs) and star-forming components, which allows us to estimate BHARs and SFRs from the infrared (IR). We perform tests to check the robustness of these estimates, including a comparison with BHARs and SFRs derived from X-ray stacking and far-IR analysis, respectively. We find that, as the progenitors evolve their relative black hole-galaxy growth (i.e. their BHAR/SFR ratio) increases from low to high redshift. The MW-mass progenitors exhibit a log-log slope of 0.64 +/- 0.11, while the M31-mass progenitors are 0.39 +/- 0.08. This result contrasts with previous studies that find an almost flat slope when adopting X-ray-/AGN-selected or mass-limited samples and is likely due to their use of a broad mixture of galaxies with different evolutionary histories. Our use of progenitor-matched samples highlights the potential importance of carefully selecting progenitors when searching for evolutionary relationships between BHAR/SFRs. Additionally, our finding that BHAR/SFR ratios do not track the rate at which progenitors quench casts doubts over the idea that the suppression of star formation is predominantly driven by luminous AGN feedback (i.e. high BHARs).


Files in this item

Thumbnail
Name:
stx2587.pdf
Size:
1.190Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record