The Orbit of the Companion to HD 100453A: Binary-driven Spiral Arms in a Protoplanetary Disk
Name:
Wagner_2018_ApJ_854_130.pdf
Size:
3.134Mb
Format:
PDF
Description:
Final Published Version
Author
Wagner, Kevin
Dong, Ruobing

Sheehan, Patrick D.

Apai, Dániel

Kasper, Markus
McClure, Melissa
Morzinski, Katie M.

Close, Laird M.

Males, Jared R.

Hinz, Phil
Quanz, S. P.

Fung, Jeffrey

Affiliation
Univ Arizona, Steward ObservIssue Date
2018-02-20Keywords
binaries: visualplanet-disk interactions
protoplanetary disks
stars: individual (HD 100453)
techniques: high angular resolution
Metadata
Show full item recordPublisher
IOP PUBLISHING LTDCitation
The Orbit of the Companion to HD 100453A: Binary-driven Spiral Arms in a Protoplanetary Disk 2018, 854 (2):130 The Astrophysical JournalJournal
The Astrophysical JournalRights
© 2018. The American Astronomical Society. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
HD 100453AB is a 10 +/- 2 Myr old binary whose protoplanetary disk was recently revealed to host a global two-armed spiral structure. Given the relatively small projected separation of the binary (1.'' 05, or similar to 108 au), gravitational perturbations by the binary seemed to be a likely driving force behind the formation of the spiral arms. However, the orbit of these stars remained poorly understood, which prevented a proper treatment of the dynamical influence of the companion on the disk. We observed HD. 100453AB between 2015 and 2017, utilizing extreme adaptive optics systems on the Very Large Telescope and the Magellan Clay Telescope. We combined the astrometry from these observations with published data to constrain the parameters of the binary's orbit to a = 1.'' 06 +/- 0.'' 09, e = 0.17 +/- 0.07, and i = 32 degrees.5 +/- 6 degrees.5. We utilized publicly available ALMA (CO)-C-12 data to constrain the inclination of the disk, i(disk) similar to 28 degrees, which is relatively coplanar with the orbit of the companion and consistent with previous estimates from scattered light images. Finally, we input these constraints into hydrodynamic and radiative transfer simulations to model the structural evolution of the disk. We find that the spiral structure and truncation of the circumprimary disk in HD 100453 are consistent with a companion-driven origin. Furthermore, we find that the primary star's rotation, its outer disk, and the companion exhibit roughly the same direction of angular momentum, and thus the system likely formed from the same parent body of material.ISSN
1538-4357Version
Final published versionSponsors
NASA's Science Mission Directorate; ESO Telescopes at the La Silla Paranal Observatory [095.C-0389(A)]; National Science Foundation Graduate Research Fellowship Program [2015209499]; NASA Exoplanets Research Program (XRP) [NNX16AD44G]Additional Links
http://stacks.iop.org/0004-637X/854/i=2/a=130?key=crossref.dd43eaa6bca62960701b4a2a81418ef8ae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/aaa767