Show simple item record

dc.contributor.authorRaithel, Carolyn A.
dc.contributor.authorSukhbold, Tuguldur
dc.contributor.authorÖzel, Feryal
dc.date.accessioned2018-05-01T23:17:44Z
dc.date.available2018-05-01T23:17:44Z
dc.date.issued2018-03-22
dc.identifier.citationCarolyn A. Raithel et al 2018 ApJ 856 35en_US
dc.identifier.issn1538-4357
dc.identifier.doi10.3847/1538-4357/aab09b
dc.identifier.urihttp://hdl.handle.net/10150/627538
dc.description.abstractThe mass distribution of compact objects provides a fossil record that can be studied to uncover information on the late stages of massive star evolution, the supernova explosion mechanism, and the dense matter equation of state. Observations of neutron star masses indicate a bimodal Gaussian distribution, while the observed black hole mass distribution decays exponentially for stellar-mass black holes. We use these observed distributions to directly confront the predictions of stellar evolution models and the neutrino-driven supernova simulations of Sukhbold et al. We find strong agreement between the black hole and low-mass neutron star distributions created by these simulations and the observations. We show that a large fraction of the stellar envelope must be ejected, either during the formation of stellar-mass black holes or prior to the implosion through tidal stripping due to a binary companion, in order to reproduce the observed black hole mass distribution. We also determine the origins of the bimodal peaks of the neutron star mass distribution, finding that the low-mass peak (centered at similar to 1.4 M-circle dot) originates from progenitors with M-ZAMS approximate to 9-18 M-circle dot. The simulations fail to reproduce the observed peak of high-mass neutron stars (centered at similar to 1.8 M-circle dot) and we explore several possible explanations. We argue that the close agreement between the observed and predicted black hole and low-mass neutron star mass distributions provides new, promising evidence that these stellar evolution and explosion models capture the majority of relevant stellar, nuclear, and explosion physics involved in the formation of compact objects.en_US
dc.description.sponsorshipNSF [DGE-1143953, PHY-1404311]; John Simon Guggenheim Memorial Foundation; NASA [NNX16AC56G]en_US
dc.language.isoenen_US
dc.publisherIOP PUBLISHING LTDen_US
dc.relation.urlhttp://stacks.iop.org/0004-637X/856/i=1/a=35?key=crossref.0b77b4144874b75a25d01857d7ea53e3en_US
dc.rights© 2018. The American Astronomical Society. All rights reserved.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectstars: black holesen_US
dc.subjectstars: evolutionen_US
dc.subjectstars: neutronen_US
dc.subjectsupernovae: generalen_US
dc.titleConfronting Models of Massive Star Evolution and Explosions with Remnant Mass Measurementsen_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Dept Astronen_US
dc.contributor.departmentUniv Arizona, Steward Observen_US
dc.identifier.journalASTROPHYSICAL JOURNALen_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US
dc.source.journaltitleThe Astrophysical Journal
dc.source.volume856
dc.source.issue1
dc.source.beginpage35
refterms.dateFOA2018-05-01T23:17:45Z


Files in this item

Thumbnail
Name:
Raithel_2018_ApJ_856_35.pdf
Size:
942.5Kb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record