Show simple item record

dc.contributor.authorPascucci, Ilaria
dc.contributor.authorMulders, Gijs D.
dc.contributor.authorGould, Andrew
dc.contributor.authorFernandes, Rachel
dc.date.accessioned2018-05-01T23:32:26Z
dc.date.available2018-05-01T23:32:26Z
dc.date.issued2018-03-28
dc.identifier.citationIlaria Pascucci et al 2018 ApJL 856 L28en_US
dc.identifier.issn2041-8213
dc.identifier.doi10.3847/2041-8213/aab6ac
dc.identifier.urihttp://hdl.handle.net/10150/627540
dc.description.abstractWe follow the microlensing approach and quantify the occurrence of Kepler exoplanets as a function of planet-to-star mass ratio, q, rather than planet radius or mass. For planets with radii similar to 1-6 R-circle plus and periods <100 days, we find that, except for a normalization factor, the occurrence rate versus q can be described by the same broken power law with a break at similar to 3 x 10(-5) independent of host type for hosts below 1 M-circle dot. These findings indicate that the planet-to-star mass ratio is a more fundamental quantity in planet formation than planet mass. We then compare our results to those from microlensing for which the overwhelming majority satisfies the M-host < 1 M-circle dot criterion. The break in q for the microlensing planet population, which mostly probes the region outside the snowline, is similar to 3-10 times higher than that inferred from Kepler. Thus, the most common planet inside the snowline is similar to 3-10 times less massive than the one outside. With rocky planets interior to gaseous planets, the solar system broadly follows the combined mass-ratio function inferred from Kepler and microlensing. However, the exoplanet population has a less extreme radial distribution of planetary masses than the solar system. Establishing whether the mass-ratio function beyond the snowline is also host type independent will be crucial to build a comprehensive theory of planet formation.en_US
dc.description.sponsorshipNASA Science Mission directorate; National Aeronautics and Space Administration [NNX15AD94G]; NASA's Science Mission Directorateen_US
dc.language.isoenen_US
dc.publisherIOP PUBLISHING LTDen_US
dc.relation.urlhttp://stacks.iop.org/2041-8205/856/i=2/a=L28?key=crossref.271406e86783450d76abd245caffcc17en_US
dc.rights© 2018. The American Astronomical Society. All rights reserved.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectmethods: data analysisen_US
dc.subjectplanetary systemsen_US
dc.subjectplanets and satellites: formationen_US
dc.titleA Universal Break in the Planet-to-star Mass-ratio Function of MKG Starsen_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Lunar & Planetary Laben_US
dc.identifier.journalASTROPHYSICAL JOURNAL LETTERSen_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US
dc.source.journaltitleThe Astrophysical Journal
dc.source.volume856
dc.source.issue2
dc.source.beginpageL28
refterms.dateFOA2018-05-01T23:32:26Z


Files in this item

Thumbnail
Name:
Pascucci_2018_ApJL_856_L28.pdf
Size:
1.034Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record