Show simple item record

dc.contributor.authorWu, Yuechen*
dc.contributor.authorChrysler, Benjamin*
dc.contributor.authorKostuk, Raymond K.*
dc.date.accessioned2018-05-15T23:57:39Z
dc.date.available2018-05-15T23:57:39Z
dc.date.issued2018-01
dc.identifier.citationYuechen Wu, Benjamin Chrysler, Raymond K. Kostuk, “Design and fabrication of cascaded dichromate gelatin holographic filters for spectrum-splitting PV systems,” J. Photon. Energy 8(1), 017001 (2018), doi: 10.1117/1.JPE.8.017001.en_US
dc.identifier.issn1947-7988
dc.identifier.doi10.1117/1.JPE.8.017001
dc.identifier.urihttp://hdl.handle.net/10150/627628
dc.description.abstractThe technique of designing, optimizing, and fabricating broadband volume transmission holograms using dichromate gelatin (DCG) is summarized for solar spectrum-splitting applications. The spectrum-splitting photovoltaic (PV) system uses a series of single-bandgap PV cells that have different spectral conversion efficiency properties to more fully utilize the solar spectrum. In such a system, one or more high-performance optical filters are usually required to split the solar spectrum and efficiently send them to the corresponding PV cells. An ideal spectral filter should have a rectangular shape with sharp transition wavelengths. A methodology of designing and modeling a transmission DCG hologram using coupled wave analysis for different PV bandgap combinations is described. To achieve a broad diffraction bandwidth and sharp cutoff wavelength, a cascaded structure of multiple thick holograms is described. A search algorithm is then developed to optimize both single-and two-layer cascaded holographic spectrum-splitting elements for the best bandgap combinations of two-and three-junction spectrum-splitting photovoltaic (SSPV) systems illuminated under the AM1.5 solar spectrum. The power conversion efficiencies of the optimized systems are found to be 42.56% and 48.41%, respectively, using the detailed balance method, and show an improvement compared with a tandem multijunction system. A fabrication method for cascaded DCG holographic filters is also described and used to prototype the optimized filter for the three-junction SSPV system. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)en_US
dc.description.sponsorshipNSF/DOE ERC [EEC-1041895]; NSF [ECCS-1405619]en_US
dc.language.isoenen_US
dc.publisherSPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERSen_US
dc.relation.urlhttps://www.spiedigitallibrary.org/journals/journal-of-photonics-for-energy/volume-8/issue-01/017001/Design-and-fabrication-of-cascaded-dichromate-gelatin-holographic-filters-for/10.1117/1.JPE.8.017001.fullen_US
dc.rights© 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)en_US
dc.subjectsolar energyen_US
dc.subjectspectrum splittingen_US
dc.subjectmultijunction PVen_US
dc.subjectholographyen_US
dc.subjectdichromate gelatin fabricationen_US
dc.titleDesign and fabrication of cascaded dichromate gelatin holographic filters for spectrum-splitting PV systemsen_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USAen_US
dc.contributor.departmentUniv Arizona, Coll Opt Sci, Tucson, AZ USAen_US
dc.identifier.journalJOURNAL OF PHOTONICS FOR ENERGYen_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US
dc.source.journaltitleJournal of Photonics for Energy
dc.source.volume8
dc.source.issue01
dc.source.beginpage1
refterms.dateFOA2018-05-15T23:57:40Z


Files in this item

Thumbnail
Name:
017001.pdf
Size:
2.965Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record