Multicast Scheduling of Wavelength-Tunable, Multiqueue Optical Data Center Switches
Name:
Multicast_JOCN_revised.pdf
Size:
503.5Kb
Format:
PDF
Description:
Final Accepted Manuscript
Affiliation
Univ Arizona, Coll Opt SciIssue Date
2018-04Keywords
Data centerMulticast traffic
Multiqueue switch
Optical packet switching
Scheduling
Star coupler
Tunability
Metadata
Show full item recordPublisher
OPTICAL SOC AMERCitation
Kamran Keykhosravi, Houman Rastegarfar, and Erik Agrell, "Multicast Scheduling of Wavelength-Tunable, Multiqueue Optical Data Center Switches," J. Opt. Commun. Netw. 10, 353-364 (2018)Rights
© 2018 Optical Society of America.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The all-optical switching of multicast flows using star couplers and tunable transceivers is a promising solution for emerging cloud data center applications. However, the limited tuning range of optical components on one hand and the buffer management challenges for multicast traffic delivery on the other pose a significant impact on the performance of optical multicast scheduling algorithms. Using only one queue per input port results in head-of-line (HOL) blocking and limits the throughput, especially for bursty traffic patterns. As the number of possible multicast destinations grows exponentially with the switch size, allocating one queue per destination is not a feasible solution. To resolve HOL blocking, in this paper we consider only a handful of queues per switch input port and devise scalable scheduling algorithms that take into account transceiver tunability constraints. According to our Monte Carlo analysis of a switch with 64 ports and operating under bursty traffic, it is possible to improve the maximum achievable throughput by 44% when the number of queues per port is increased from one to eight. We show that the performance gains due to an increase in the queue count depend on the availability of the spectral resources. With the scarcity of wavelengths, an increase in the number of queues leads to diminishing returns.Note
12 month embargo; published online: 15 March 2018ISSN
1943-06201943-0639
Version
Final accepted manuscriptSponsors
Swedish Research Council [2014-6230]; NSF Center for Integrated Access Networks (CIAN) [EEC-0812072]Additional Links
https://www.osapublishing.org/abstract.cfm?URI=jocn-10-4-353ae974a485f413a2113503eed53cd6c53
10.1364/JOCN.10.000353