Multicast Scheduling of Wavelength-Tunable, Multiqueue Optical Data Center Switches
dc.contributor.author | Keykhosravi, Kamran | |
dc.contributor.author | Rastegarfar, Houman | |
dc.contributor.author | Agrell, Erik | |
dc.date.accessioned | 2018-05-21T17:09:41Z | |
dc.date.available | 2018-05-21T17:09:41Z | |
dc.date.issued | 2018-04 | |
dc.identifier.citation | Kamran Keykhosravi, Houman Rastegarfar, and Erik Agrell, "Multicast Scheduling of Wavelength-Tunable, Multiqueue Optical Data Center Switches," J. Opt. Commun. Netw. 10, 353-364 (2018) | en_US |
dc.identifier.issn | 1943-0620 | |
dc.identifier.issn | 1943-0639 | |
dc.identifier.doi | 10.1364/JOCN.10.000353 | |
dc.identifier.uri | http://hdl.handle.net/10150/627685 | |
dc.description.abstract | The all-optical switching of multicast flows using star couplers and tunable transceivers is a promising solution for emerging cloud data center applications. However, the limited tuning range of optical components on one hand and the buffer management challenges for multicast traffic delivery on the other pose a significant impact on the performance of optical multicast scheduling algorithms. Using only one queue per input port results in head-of-line (HOL) blocking and limits the throughput, especially for bursty traffic patterns. As the number of possible multicast destinations grows exponentially with the switch size, allocating one queue per destination is not a feasible solution. To resolve HOL blocking, in this paper we consider only a handful of queues per switch input port and devise scalable scheduling algorithms that take into account transceiver tunability constraints. According to our Monte Carlo analysis of a switch with 64 ports and operating under bursty traffic, it is possible to improve the maximum achievable throughput by 44% when the number of queues per port is increased from one to eight. We show that the performance gains due to an increase in the queue count depend on the availability of the spectral resources. With the scarcity of wavelengths, an increase in the number of queues leads to diminishing returns. | en_US |
dc.description.sponsorship | Swedish Research Council [2014-6230]; NSF Center for Integrated Access Networks (CIAN) [EEC-0812072] | en_US |
dc.language.iso | en | en_US |
dc.publisher | OPTICAL SOC AMER | en_US |
dc.relation.url | https://www.osapublishing.org/abstract.cfm?URI=jocn-10-4-353 | en_US |
dc.rights | © 2018 Optical Society of America. | en_US |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | Data center | en_US |
dc.subject | Multicast traffic | en_US |
dc.subject | Multiqueue switch | en_US |
dc.subject | Optical packet switching | en_US |
dc.subject | Scheduling | en_US |
dc.subject | Star coupler | en_US |
dc.subject | Tunability | en_US |
dc.title | Multicast Scheduling of Wavelength-Tunable, Multiqueue Optical Data Center Switches | en_US |
dc.type | Article | en_US |
dc.contributor.department | Univ Arizona, Coll Opt Sci | en_US |
dc.identifier.journal | JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING | en_US |
dc.description.note | 12 month embargo; published online: 15 March 2018 | en_US |
dc.description.collectioninformation | This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu. | en_US |
dc.eprint.version | Final accepted manuscript | en_US |
dc.source.journaltitle | Journal of Optical Communications and Networking | |
dc.source.volume | 10 | |
dc.source.issue | 4 | |
dc.source.beginpage | 353 |