OSSOS. VIII. The Transition between Two Size Distribution Slopes in the Scattering Disk
Name:
Lawler_2018_AJ_155_197.pdf
Size:
525.5Kb
Format:
PDF
Description:
Final Published version
Author
Lawler, S. M.Shankman, C.
Kavelaars, J. J.
Alexandersen, M.
Bannister, M. T.
Chen, Ying-Tung
Gladman, B.
Fraser, W. C.
Gwyn, S.
Kaib, N.
Petit, J.-M.
Volk, K.
Affiliation
Univ Arizona, Lunar & Planetary LabIssue Date
2018-05Keywords
Kuiper belt: general
Metadata
Show full item recordPublisher
IOP PUBLISHING LTDCitation
S. M. Lawler et al 2018 AJ 155 197Journal
ASTRONOMICAL JOURNALRights
© 2018. The American Astronomical Society. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The scattering trans-Neptunian Objects (TNOs) can be measured to smaller sizes than any other distant small-body population. We use the largest sample yet obtained, 68 discoveries, primarily by the Outer Solar System Origins Survey (OSSOS), to constrain the slope of its luminosity distribution, with sensitivity to much fainter absolute H-magnitudes than previous work. Using the analysis technique in Shankman et al., we confirm that a single slope for the H-distribution is not an accurate representation of the scattering TNOs and Centaurs, and that a break in the distribution is required, in support of previous conclusions. A bright-end slope of alpha(b) = 0.9 transitioning to a faint-end slope alpha(f) of 0.4-0.5 with a differential number contrast c from 1 (a knee) to 10 (a divot) provides an acceptable match to our data. We find that break magnitudes H-b of 7.7 and 8.3, values both previously suggested for dynamically hot Kuiper Belt populations, are equally non-rejectable for a range of alpha(f) and c in our statistical analysis. Our preferred divot H-distribution transitions to alpha(f) = 0.5 with a divot of contrast c = 3 at H-b = 8.3, while our preferred knee H-distribution transitions to alpha(f) = 0.4 at H-b = 7.7. The intrinsic population of scattering TNOs required to match the OSSOS detections is 3 x 10(6) for H-r < 12, and 9 x 10(4) for H-r < 8.66 (D greater than or similar to 100 km), with Centaurs having an intrinsic population two orders of magnitude smaller.ISSN
1538-3881Version
Final published versionSponsors
NRC-Canada Plaskett Fellowship; UK STFC [ST/L000709/1]; Science and Technology Facilities Council [ST/P0003094/1]; National Science and Engineering Research Council; National Research Council of CanadaAdditional Links
http://stacks.iop.org/1538-3881/155/i=5/a=197?key=crossref.a4a2f22c5981ecb306f967b91c8effe0ae974a485f413a2113503eed53cd6c53
10.3847/1538-3881/aab8ff