Show simple item record

dc.contributor.authorBode, Felix
dc.contributor.authorFerre, Ty
dc.contributor.authorZigelli, Niklas
dc.contributor.authorEmmert, Martin
dc.contributor.authorNowak, Wolfgang
dc.date.accessioned2018-05-24T18:53:59Z
dc.date.available2018-05-24T18:53:59Z
dc.date.issued2018-03
dc.identifier.citationBode, F., Ferré, T., Zigelli, N., Emmert, M., & Nowak, W. (2018). Reconnecting stochastic methods with hydrogeological applications: A utilitarian uncertainty analysis and risk assessment approach for the design of optimal monitoring networks. Water Resources Research, 54, 2270–2287. https://doi.org/10.1002/2017WR020919en_US
dc.identifier.issn0043-1397
dc.identifier.doi10.1002/2017WR020919
dc.identifier.urihttp://hdl.handle.net/10150/627795
dc.description.abstractCollaboration between academics and practitioners promotes knowledge transfer between research and industry, with both sides benefiting greatly. However, academic approaches are often not feasible given real-world limits on time, cost and data availability, especially for risk and uncertainty analyses. Although the need for uncertainty quantification and risk assessment are clear, there are few published studies examining how scientific methods can be used in practice. In this work, we introduce possible strategies for transferring and communicating academic approaches to real-world applications, countering the current disconnect between increasingly sophisticated academic methods and methods that work and are accepted in practice. We analyze a collaboration between academics and water suppliers in Germany who wanted to design optimal groundwater monitoring networks for drinking-water well catchments. Our key conclusions are: to prefer multiobjective over single-objective optimization; to replace Monte-Carlo analyses by scenario methods; and to replace data-hungry quantitative risk assessment by easy-to-communicate qualitative methods. For improved communication, it is critical to set up common glossaries of terms to avoid misunderstandings, use striking visualization to communicate key concepts, and jointly and continually revisit the project objectives. Ultimately, these approaches and recommendations are simple and utilitarian enough to be transferred directly to other practical water resource related problems.en_US
dc.description.sponsorshipGerman Technical and Scientific Association for Gas and Water (DVGW) [Q 1-01-10-F]; German Research Foundation (DFG) through the International Research Training Group NUPUS [IRTG 1398]; Cluster of Excellence in Simulation Technology at the University of Stuttgart [EXC 310/2]en_US
dc.language.isoenen_US
dc.publisherAMER GEOPHYSICAL UNIONen_US
dc.relation.urlhttps://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017WR020919en_US
dc.rights© 2018. American Geophysical Union. All Rights Reserved.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectOptimal groundwater monitoringen_US
dc.subjectreconnecting science and practiceen_US
dc.subjectcommunication strategiesen_US
dc.subjectrisk assessmenten_US
dc.subjectuncertainty analysisen_US
dc.subjectmultiobjective optimizationen_US
dc.titleReconnecting Stochastic Methods With Hydrogeological Applications: A Utilitarian Uncertainty Analysis and Risk Assessment Approach for the Design of Optimal Monitoring Networksen_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Dept Hydrol & Atmospher Scien_US
dc.identifier.journalWATER RESOURCES RESEARCHen_US
dc.description.note6 month embargo; published online: 08 March 2018en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US


Files in this item

Thumbnail
Name:
Bode_et_al-2018-Water_Resource ...
Size:
3.313Mb
Format:
PDF
Description:
Final Published version

This item appears in the following Collection(s)

Show simple item record