Show simple item record

dc.contributor.authorMorzfeld, Matthias*
dc.contributor.authorDay, Marcus S.*
dc.contributor.authorGrout, Ray W.*
dc.contributor.authorHeng Pau, George Shu*
dc.contributor.authorFinsterle, Stefan A.*
dc.contributor.authorBell, John B.*
dc.date.accessioned2018-06-04T23:37:39Z
dc.date.available2018-06-04T23:37:39Z
dc.date.issued2018
dc.identifier.citationMorzfeld, M., Day, M. S., Grout, R. W., Heng Pau, G. S., Finsterle, S. A., & Bell, J. B. (2018). Iterative Importance Sampling Algorithms for Parameter Estimation. SIAM Journal on Scientific Computing, 40(2), B329-B352.en_US
dc.identifier.issn1064-8275
dc.identifier.issn1095-7197
dc.identifier.doi10.1137/16M1088417
dc.identifier.urihttp://hdl.handle.net/10150/627884
dc.description.abstractIn parameter estimation problems one computes a posterior distribution over uncertain parameters defined jointly by a prior distribution, a model, and noisy data. Markov chain Monte Carlo (MCMC) is often used for the numerical solution of such problems. An alternative to MCMC is importance sampling, which can exhibit near perfect scaling with the number of cores on high performance computing systems because samples are drawn independently. However, finding a suitable proposal distribution is a challenging task. Several sampling algorithms have been proposed over the past years that take an iterative approach to constructing a proposal distribution. We investigate the applicability of such algorithms by applying them to two realistic and challenging test problems, one in subsurface flow, and one in combustion modeling. More specifically, we implement importance sampling algorithms that iterate over the mean and covariance matrix of Gaussian or multivariate t-proposal distributions. Our implementation leverages massively parallel computers, and we present strategies to initialize the iterations using "coarse" MCMC runs or Gaussian mixture models.en_US
dc.description.sponsorshipU.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics Program [DE-AC02-05CH11231]; National Science Foundation [DMS-1619630]; Alfred P. Sloan Foundation through a Sloan Research Fellowship; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]en_US
dc.language.isoenen_US
dc.publisherSIAM PUBLICATIONSen_US
dc.relation.urlhttps://epubs.siam.org/doi/10.1137/16M1088417en_US
dc.rights© 2018, Society for Industrial and Applied Mathematics.en_US
dc.subjectimportance samplingen_US
dc.subjectparameter estimationen_US
dc.subjectBayesian inverse problemen_US
dc.titleIterative Importance Sampling Algorithms for Parameter Estimationen_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizonaen_US
dc.identifier.journalSIAM JOURNAL ON SCIENTIFIC COMPUTINGen_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US
dc.source.journaltitleSIAM Journal on Scientific Computing
dc.source.volume40
dc.source.issue2
dc.source.beginpageB329
dc.source.endpageB352
refterms.dateFOA2018-06-04T23:37:39Z


Files in this item

Thumbnail
Name:
16m1088417.pdf
Size:
1.517Mb
Format:
PDF
Description:
Final Published version

This item appears in the following Collection(s)

Show simple item record