Show simple item record

dc.contributor.authorMiller, T. B.
dc.contributor.authorChapman, S. C.
dc.contributor.authorAravena, Manuel
dc.contributor.authorAshby, M. L. N.
dc.contributor.authorHayward, C. C.
dc.contributor.authorVieira, J. D.
dc.contributor.authorWeiß, A.
dc.contributor.authorBabul, A.
dc.contributor.authorBéthermin, M.
dc.contributor.authorBradford, C. M.
dc.contributor.authorBrodwin, Mark
dc.contributor.authorCarlstrom, J. E.
dc.contributor.authorChen, Chian-Chou
dc.contributor.authorCunningham, D. J. M.
dc.contributor.authorDe Breuck, C.
dc.contributor.authorGonzalez, A. H.
dc.contributor.authorGreve, T. R.
dc.contributor.authorHarnett, J.
dc.contributor.authorHezaveh, Y.
dc.contributor.authorLacaille, K.
dc.contributor.authorLitke, K. C.
dc.contributor.authorMa, J.
dc.contributor.authorMalkan, M.
dc.contributor.authorMarrone, Daniel P.
dc.contributor.authorMorningstar, W.
dc.contributor.authorMurphy, Eric J.
dc.contributor.authorNarayanan, D.
dc.contributor.authorPass, E.
dc.contributor.authorPerry, R.
dc.contributor.authorPhadke, K. A.
dc.contributor.authorRennehan, D.
dc.contributor.authorRotermund, K. M.
dc.contributor.authorSimpson, J.
dc.contributor.authorSpilker, J. S.
dc.contributor.authorSreevani, J.
dc.contributor.authorStark, A. A.
dc.contributor.authorStrandet, M. L.
dc.contributor.authorStrom, A. L.
dc.date.accessioned2018-06-12T16:21:59Z
dc.date.available2018-06-12T16:21:59Z
dc.date.issued2018-04-26
dc.identifier.citationMiller, T. B., Chapman, S. C., Aravena, M., Ashby, M. L. N., Hayward, C. C., Vieira, J. D., ... & Brodwin, M. (2018). A massive core for a cluster of galaxies at a redshift of 4.3. Nature, 556(7702), 469-472, doi:10.1038/s41586-018-0025-2en_US
dc.identifier.issn0028-0836
dc.identifier.issn1476-4687
dc.identifier.pmid29695849
dc.identifier.doi10.1038/s41586-018-0025-2
dc.identifier.urihttp://hdl.handle.net/10150/627933
dc.description.abstractMassive galaxy clusters have been found that date to times as early as three billion years after the Big Bang, containing stars that formed at even earlier epochs(1-3). The high-redshift progenitors of these galaxy clusters-termed 'protoclusters'-can be identified in cosmological simulations that have the highest overdensities (greater-than-average densities) of dark matter(4-6). Protoclusters are expected to contain extremely massive galaxies that can be observed as luminous starbursts7. However, recent detections of possible protoclusters hosting such starbursts(8-11) do not support the kind of rapid cluster-core formation expected from simulations(12): the structures observed contain only a handful of starbursting galaxies spread throughout a broad region, with poor evidence for eventual collapse into a protocluster. Here we report observations of carbon monoxide and ionized carbon emission from the source SPT234956. We find that this source consists of at least 14 gas-rich galaxies, all lying at redshifts of 4.31. We demonstrate that each of these galaxies is forming stars between 50 and 1,000 times more quickly than our own Milky Way, and that all are located within a projected region that is only around 130 kiloparsecs in diameter. This galaxy surface density is more than ten times the average blank-field value (integrated over all redshifts), and more than 1,000 times the average field volume density. The velocity dispersion (approximately 410 kilometres per second) of these galaxies and the enormous gas and star-formation densities suggest that this system represents the core of a cluster of galaxies that was already at an advanced stage of formation when the Universe was only 1.4 billion years old. A comparison with other known protoclusters at high redshifts shows that SPT2349-56 could be building one of the most massive structures in the Universe today.en_US
dc.description.sponsorshipNSF [PLR-1248097, PHY-1125897]; Kavli Foundation; Gordon and Betty Moore Foundation [GBMF 947]; Atacama Pathfinder Experiment (APEX) [E-299.A-5045A-2017, M-091.F-0031-2013]; Australian Government; US NSF [AST-1312950]; National Sciences and Engineering Research Council (NSERC); Canada Foundation for Innovation (CFI); Killam trust; Fondo Nacional de Desarrollo Cientifica y Tecnologico (FONDECYT, Chile) [114009]; Simons Foundation; A.P. Sloan Foundation Fellowshipen_US
dc.language.isoenen_US
dc.publisherNATURE PUBLISHING GROUPen_US
dc.relation.urlhttp://www.nature.com/articles/s41586-018-0025-2en_US
dc.rightsCopyright © 2018, Springer Natureen_US
dc.titleA massive core for a cluster of galaxies at a redshift of 4.3en_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Steward Observen_US
dc.identifier.journalNATUREen_US
dc.description.note6 month embargo; published online: 25 April 2018en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal accepted manuscripten_US
dc.source.journaltitleNature
dc.source.volume556
dc.source.issue7702
dc.source.beginpage469
dc.source.endpage472


Files in this item

Thumbnail
Name:
MillerE18_natureAccepted.pdf
Size:
2.555Mb
Format:
PDF
Description:
Final Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record