• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Statistics

    Display statistics

    Understanding Quaternary Soil Formation Using a Synthesis of Soil Chronosequences

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_16192_sip1_m.pdf
    Size:
    32.30Mb
    Format:
    PDF
    Download
    Author
    Shepard, Christopher
    Issue Date
    2018
    Keywords
    Clay production
    Orbital climate change
    Pedogenic model
    Quaternary
    Soil chronosequence
    Soil evolution
    Advisor
    Rasmussen, Craig
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Soil formation represents a suite of biogeochemical and physical processes that transform rock and sediment into a complex, organized system that sustains life. Soils are at the heart of the critical zone, the thin outermost veneer of the Earth’s curst that supports life, and are the interface between the lithosphere, biosphere, hydrosphere and atmosphere. As such, soil formation is influenced by climate, biology, topography, parent material, and time; however, a key knowledge gap exists in our understanding of how past conditions, such as climate or parent material has shaped and altered soil formation across the Earth’s surface. Soil chronosequences quantify soil property change as a function of time. Soil chronosequences have been described for the last 70 years, and represent a valuable, but under utilized, record of soil change in relation to time, climate, ecosystems, geomorphic surfaces, and parent materials. The presented work was based on an extensive synthesis of soil chronosequence studies. Here, I present a collection of studies aimed at understanding how past and modern climate conditions altered soil formation processes and influenced the distribution of soil properties, and models that quantify the influence of past and modern climate on soil formation. I hypothesized that Quaternary climate change, driven by orbitally modulated insolation, is likely responsible for the observed patterns of soil evolution and preservation, and distributions of modern soil properties. Rapid climate change from glacial to interglacial periods generates large pulses of sediment that are deposited in sedimentary basins. Deposited sediment serves as the parent material for soil formation; most soils initially form under stabilized interglacial climates, and evolve throughout the generally slow return to full glacial conditions. At the next glacial-interglacial transition, the degree of soil development maintains the soils against the increased erosive potential during these rapid climate changes. The soil chronosequence database was used to test the hypothesis of Quaternary climate change influence of soil evolution. The greatest variability in soil physical properties was found between 10<sup>3</sup> – 10<sup>5</sup> years, on par with the time scale of Quaternary climate cycling, with the greatest climatic influence in soil physical properties at 10<sup>5</sup> years. A time series of soil age, representing a record of Quaternary soil preservation, exhibited regular periodicities at 41 ky and 98 ky, indicative of obliquity and eccentricity orbital cycles. Relating soil preservation to available paleoclimate proxies demonstrated that preserved soil ages generally occur following rapid glacial-interglacial transitions. The variability of the Quaternary climate system was likely a major force driving global soil property variability over time, by preferentially removing some soils through increased erosion at climate transitions. Periods of rapid climate change initiate periods of increased sediment production, which are likely key to generating sediments that serve as parent materials for further soil formation. This work demonstrates orbital climate signals in soil-landscapes systems, and supports an orbital interpretation of terrestrial paleoclimate proxies. Clays are the main soil formation product, and are a key variable for understanding the hydrology and biology of soils. Using the soil chronosequence database, a humped behavior in clay production was observed; clay production was initially slow, rapidly increased with minimal clay accumulation, and decreased exponentially following clay accumulation past a threshold value. A simple, semi-empirical humped clay production model was tested using the soil chronosequence synthesis, and effectively replicated the observed clay accumulation in the chronosequence soils. The humped clay production model indicated that clay production and erosion were tightly tuned; if erosion was too high, or clay production too low, a given soil profile would erode. This result indicated landscape stability under changing climate conditions may be tied to clay production in soils. The humped clay production model represents a simplistic approach to quantifying the observed bulk behavior of clay accumulation in soils. Given the variability in past environmental conditions and uncertainty in the initial soil state, soil formation is highly variable. Using a probabilistic formulation of Jenny’s soil state factor model, parameterized using a time-integrated measure of the mass and energy added to the soil system (as quantified using effective energy and mass transfer, or EEMT), the variable nature of soil formation was quantified. The probabilistic state factor model was realized using a bivariate normal probability distribution and was built using the soil chronosequence synthesis. This new approach was tested against the soil chronosequence synthesis and data from the US NSF Critical Zone Observatories. The approach effectively predicted clay content in the soil chronosequences, and the complex landscapes of the Critical Zone Observatories. This study represents a new approach for quantifying soil physical properties, which can be utilized for any variable with the appropriate data. From this work, a better understanding of the global evolution of soil-landscapes was developed, with the Quaternary climate system driving regular periods of soil formation, that are explicitly linked to orbital forcings. Further, state-of-the-art models were used to successfully simulate these observations. The presented models are widely applicable and can be included in digital soil mapping exercises and numerical landscape evolution models.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Soil, Water & Environmental Science
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.