• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Sensitizing Human Cancer Cells Through the Inhibition of NSMCE2

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_16335_sip1_m.pdf
    Size:
    2.304Mb
    Format:
    PDF
    Download
    Author
    Alassady, Hanen Assad
    Issue Date
    2018
    Keywords
    Cancer Biology
    Compound Screen
    DNA repair
    E3 SUMO Ligase
    NSMCE2
    SUMOylation
    Advisor
    Ellis, Nathan
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Homologous recombination (HR) is a high-fidelity DNA repair pathway that is activated mainly by replication-associated DNA damage. DNA damaging agents that cause double strand breaks (DSBs) at the replication fork can be repaired by HR. NSMCE2, an E3 sumo ligase, regulates HR at damaged replication forks. NSMCE2, complexed with the structural maintenance of chromosomes (SMC) 5/6 complex, stimulates the SUMOylation of the SMC6 coiled-coil region, thus mediating HR. Cancers that have defects in their HR machinery are susceptible to chemotherapies that elicit DNA damage, and in particular, damage that affects DNA replication. Targeting regulators of HR could therefore sensitize HR-proficient cancers to standard therapies. We used in-silico protein modeling to generate a 3D model of the human NSMCE2 protein. We identified a deep pocket in NSMCE2 that is adjacent to an active-site zinc-binding region and twelve compounds that potentially could occupy that pocket. We sought to determine whether any of these compounds could inhibit NSMCE2 activity or function. We screened the compounds in the human osteosarcoma cell line (U2OS) for synergistic inhibition of cellular proliferation by the topoisomerase 1 inhibitor, camptothecin, and identified four that caused no cellular toxicity on their own whereas they were synergistic with camptothecin in limiting cell proliferation. One of the compounds, compound 3, showed a twelve-fold increase in inhibition of cellular proliferation in combination with camptothecin. We also were able to determine compound specificity to NSMCE2 using a mutation in HEK293T cells. We concluded using small molecule inhibitors of NSMCE2 could be useful in enhancing chemotherapy-mediated killing of HR-proficient cancer cells. Development of NSMCE2 inhibitors could also lead to adjuvant therapies that would allow for patients to receive lower doses of toxic topoisomerase poisons.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Molecular & Cellular Biology
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.