• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Is Complete Case Analysis Appropriate for Cox Regression with Missing Covariate Data?

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_16375_sip1_m.pdf
    Size:
    527.2Kb
    Format:
    PDF
    Download
    Author
    Zhu, Min
    Issue Date
    2018
    Keywords
    cimar
    complete case analysis
    cox
    fimar
    missing covariates
    simulation
    Advisor
    Hsu, Chiu-Hsieh
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Purpose: Complete case analysis of survival datasets with missing covariates in Cox proportional hazards model relies heavily on strong and usually unverifiable missing mechanism assumptions such as missing completely at random (MCAR) to produce reasonable parameter estimates. Based on the nature of survival data, missing at random (MAR) for missing covariates can be further decomposed into 1) censoring ignorable missing at random (CIMAR) and 2) failure ignorable missing at random (FIMAR). Unlike MCAR and MAR, there are procedures to assess whether missingness of covariates in survival data are consistent with CIMAR or FIMAR. In my thesis, I investigate the performances of the complete case analysis under various missing mechanisms in Cox model and demonstrate the procedures for checking consistency with CIMAR or FIMAR. Experimental design: For research involving missing data, simulation studies are especially useful while studying the performance of some estimation (e.g. complete case analysis) as all parameters are pre-specified and known. I simulate survival data with missing covariates under various missing data mechanisms including MCAR, missing at random (MAR), missing not at random (MNAR), CIMAR and FIMAR. I then perform complete case Cox regression on simulated datasets and compare results to determine which missingness mechanisms produce reasonable parameter estimates. Finally, I perform a two-step procedure to check whether covariate missingness is consistent with CIMAR or FIMAR on a real dataset as outlined by Rathouz (2006). Results: This simulation study illustrates that when covariate missingness is FIMAR but not CIMAR, complete case Cox regression produces reasonable parameter estimates similar to when missingness is MCAR. When covariate missingness is CIMAR, complete case Cox regression produces biased parameter estimates. The two-step procedure suggests covariate missingness in the Stanford heart transplant data is consistent with FIMAR. Conclusions: Survival data with missing covariates that are FIMAR are appropriate for complete case analysis in Cox models. Survival data with missing covariates that are CIMAR are not appropriate for complete case analysis in Cox models. Under independent censoring, it should be possible for researchers to check the consistency of missing covariates in survival data with FIMAR and CIMAR assumptions. If missingness is consistent with FIMAR, complete case Cox regression should produce reasonable estimates. If missingness is consistent with CIMAR or if the data is inconsistent with both CIMAR and FIMAR, complete case Cox regression may produce biased estimates and researchers should consider sensitivity analyses.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Biostatistics
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.