Show simple item record

dc.contributor.authorLiu, Jingyu
dc.contributor.authorPiegorsch, Walter W.
dc.contributor.authorSchissler, A. Grant
dc.contributor.authorCutter, Susan L.
dc.date.accessioned2018-09-07T00:10:24Z
dc.date.available2018-09-07T00:10:24Z
dc.date.issued2018-06-01
dc.identifier.citationLiu, J., Piegorsch, W. W., Grant Schissler, A., & Cutter, S. L. (2018). Autologistic models for benchmark risk or vulnerability assessment of urban terrorism outcomes. Journal of the Royal Statistical Society: Series A (Statistics in Society).en_US
dc.identifier.issn0964-1998
dc.identifier.doi10.1111/rssa.12323
dc.identifier.urihttp://hdl.handle.net/10150/628660
dc.description.abstractWe develop a quantitative methodology to characterize vulnerability among 132 U.S. urban centers ('cities') to terrorist events, applying a place-based vulnerability index to a database of terrorist incidents and related human casualties. A centered autologistic regression model is employed to relate urban vulnerability to terrorist outcomes and also to adjust for autocorrelation in the geospatial data. Risk-analytic 'benchmark' techniques are then incorporated into the modeling framework, wherein levels of high and low urban vulnerability to terrorism are identified. This new, translational adaptation of the risk-benchmark approach, including its ability to account for geospatial autocorrelation, is seen to operate quite flexibly in this socio-geographic setting.en_US
dc.description.sponsorshipU.S. National Institutes of Health grant #ES027394en_US
dc.language.isoenen_US
dc.publisherWILEYen_US
dc.relation.urlhttps://rss.onlinelibrary.wiley.com/doi/10.1111/rssa.12323en_US
dc.rights© 2017 Royal Statistical Society.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectBenchmark doseen_US
dc.subjectCentered autologistic modelen_US
dc.subjectGeospatial analysisen_US
dc.subjectMaximum pseudo-likelihood estimationen_US
dc.subjectQuantitative risk analysisen_US
dc.subjectSpatial autocorrelationen_US
dc.titleAutologistic models for benchmark risk or vulnerability assessment of urban terrorism outcomes.en_US
dc.typeArticleen_US
dc.contributor.departmentUniversity of Arizonaen_US
dc.contributor.departmentUniversity of Arizonaen_US
dc.contributor.departmentUniversity of Nevadaen_US
dc.contributor.departmentUniversity of South Carolinaen_US
dc.identifier.journalJournal of the Royal Statistical Society, series A (Statistics in Society)en_US
dc.description.note12 month embargo; first published: 10 October 2017en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal accepted manuscripten_US
dc.source.journaltitleJournal of the Royal Statistical Society. Series A, (Statistics in Society)


Files in this item

Thumbnail
Name:
LiuEtAl2018.pdf
Size:
6.180Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record