• Reflections on the foundation, persistence, and growth of the Laboratory of Tree-Ring Research, circa 1930–1960

      Creasman, P.P.; Bannister, B.; Towner, R.H.; Dean, J.S.; Leavitt, S.W. (Tree-Ring Society, 2012-07)
      On the occasion of the 75th anniversary of the Laboratory of Tree-Ring Research, it is appropriate to reflect on the origin of the LTRR and the oft overlooked early period of its history. The period from the “Bridging the gap” event in 1929 to the semi-retirement of A.E. Douglass in 1958 was a crucial time in the development of the LTRR. Although this paper focuses on the history of the LTRR between those events, at points the history of the LTRR is, essentially, the history of the field, making a holistic understanding all the more important. The information presented here is rooted in a series of transcribed historical lectures delivered in 1992 and 1993 by Director/Professor Emeritus Bryant Bannister, and several historical reports composed by him between 1963 and 1998.
    • Snowpack reconstructions incorporating climate in the Upper Green River Basin (Wyoming)

      Anderson, S.; Moser, C.L.; Tootle, G.A.; Grissino-Mayer, H.D.; Timilsena, J.; Piechota, T. (Tree-Ring Society, 2012-07)
      The Green River is the largest tributary of the Colorado River. Given that snowpack is the primary driver of streamflow, information on the long-term regional snowpack (regionalized April 1 Snow Water Equivalent (SWE)) variability would provide useful information for water managers and planners. Previous research efforts were unable to develop skillful SWE reconstructions using tree-ring chronologies in the Upper Green River Basin (UGRB) of Wyoming because of limited tree-ring chronologies in the area. The current research uses Principal Components Analysis to regionalize April 1 snowpack data in the UGRB. Recent research efforts developed six new tree-ring chronologies in and adjacent to the UGRB. These new chronologies, along with 38 existing chronologies, were correlated with the regionalized SWE data. Chronologies positively correlated at a 95% confidence level or higher were retained. Stepwise linear regressions were performed and a reconstruction of UGRB regional April 1 SWE was achieved (R2  =  0.21). Climate signals (Pacific Decadal Oscillation (PDO) and Southern Oscillation Index (SOI)) were introduced to the predictor variables and an additional regression was performed. Inclusion of the SOI resulted in a statistically skillful reconstruction (R2  =  0.58). Temporal drought periods for SWE and for streamflow were examined for the UGRB and a direct relationship was observed.