• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Study of Adversarial Attacks Against an LSTM Language Model and the Impact of Normalization in SNN

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_16561_sip1_m.pdf
    Size:
    2.572Mb
    Format:
    PDF
    Download
    Author
    Liang, Zhengzhong
    Issue Date
    2018
    Keywords
    Adversarial Learning
    Language Model
    Long Short-Term Memory
    Normalization
    Spiking Neural Network
    Advisor
    Ditzler, Gregory
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 08/15/2020
    Abstract
    Artificial Neural Networks (ANNs) have been used to many application-driven fields and have been shown to be quite successful, however, some aspects of ANNs are not well understood. One such area is learning an ANN in the presence of an adversary.In such a context, it is assumed that the attacker can manipulate the training (also referred to causative attack or poison) or testing data (also referred to exploratory attack) to disrupt its normal functionality. In turn, the defender aims at reducing the impact of such attacks as much as possible. The first part of this thesis focuses on causative attacks against an Long Short-Term Memory (LSTM) neural network in a language model. In causative attacks, it is assumed that the attacker can only change the training text in the language model. We study the behavior of the LSTM language model under different causative attacks and propose several simple measures that can reduce the impact of the attacks. Our results show that the poisoning ratio, the poisoning position and the generation of poisoned text can all influence the performance the LSTM language model. Furthermore, we show that proper use of dropout and gradient clipping can reduce the impact of poisoning the training data to some extent. We also contribute to understanding how to globally learn a Spiking Neural Network (SNN). SNNs are a type of ANN; however SNNs are much more biologically realistic than other ANNs. SNNs have not been widely adopted because of several critical issues of SNNs that are not well studied. One such effect is the training of SNNs and the encoding/decoding of signals in SNNs. In the second part of this thesis, we build an SNN based image classifier to study the encoding/decoding of signals and compare several learning rules for training an SNN. Results reveal that (i) classical STDP learning windows generally obtain the best performance using different decoding schemes; (ii) first-spike decoding has worse accuracy than count decoding classifier does when no normalization rules are applied, although first-spike decoding classifier consumes much less time than count decoding classifier; (iii) the performance of first-spike decoding classifier can be largely enhanced with proper use of normalization rules.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Electrical & Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.