Target patterns in a 2D array of oscillators with nonlocal coupling
Publisher
Institute of Physics, LondonCitation
Gabriela Jaramillo and Shankar C Venkataramani 2018 Nonlinearity 31 4162Journal
NonlinearityRights
© 2018 IOP Publishing Ltd & London Mathematical Society.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We analyze the effect of adding a weak, localized, inhomogeneity to a two dimensional array of oscillators with nonlocal coupling. We propose and also justify a model for the phase dynamics in this system. Our model is a generalization of a viscous eikonal equation that is known to describe the phase modulation of traveling waves in reaction–diffusion systems. We show the existence of a branch of target pattern solutions that bifurcates from the spatially homogeneous state when , the strength of the inhomogeneity, is nonzero and we also show that these target patterns have an asymptotic wavenumber that is small beyond all orders in . The strategy of our proof is to pose a good ansatz for an approximate form of the solution and use the implicit function theorem to prove the existence of a solution in its vicinity. The analysis presents two challenges. First, the linearization about the homogeneous state is a convolution operator of diffusive type and hence not invertible on the usual Sobolev spaces. Second, a regular perturbation expansion in does not provide a good ansatz for applying the implicit function theorem since the nonlinearities play a major role in determining the relevant approximation, which also needs to be 'correct' to all orders in . We overcome these two points by proving Fredholm properties for the linearization in appropriate Kondratiev spaces and using a refined ansatz for the approximate solution which was obtained using matched asymptotics.Note
12 month embargo; published 26 July 2018Version
Final accepted manuscriptAdditional Links
https://arxiv.org/abs/1706.00524ae974a485f413a2113503eed53cd6c53
10.1088/1361-6544/aac9a6