Show simple item record

dc.contributor.authorAbbott, T. M. C.
dc.contributor.authorAbdalla, F. B.
dc.contributor.authorAlarcon, A.
dc.contributor.authorAleksić, J.
dc.contributor.authorAllam, S.
dc.contributor.authorAllen, S.
dc.contributor.authorAmara, A.
dc.contributor.authorAnnis, J.
dc.contributor.authorAsorey, J.
dc.contributor.authorAvila, S.
dc.contributor.authorBacon, D.
dc.contributor.authorBalbinot, E.
dc.contributor.authorBanerji, M.
dc.contributor.authorBanik, N.
dc.contributor.authorBarkhouse, W.
dc.contributor.authorBaumer, M.
dc.contributor.authorBaxter, E.
dc.contributor.authorBechtol, K.
dc.contributor.authorBecker, M. R.
dc.contributor.authorBenoit-Lévy, A.
dc.contributor.authorBenson, B. A.
dc.contributor.authorBernstein, G. M.
dc.contributor.authorBertin, E.
dc.contributor.authorBlazek, J.
dc.contributor.authorBridle, S. L.
dc.contributor.authorBrooks, D.
dc.contributor.authorBrout, D.
dc.contributor.authorBuckley-Geer, E.
dc.contributor.authorBurke, D. L.
dc.contributor.authorBusha, M. T.
dc.contributor.authorCampos, A.
dc.contributor.authorCapozzi, D.
dc.contributor.authorCarnero Rosell, A.
dc.contributor.authorCarrasco Kind, M.
dc.contributor.authorCarretero, J.
dc.contributor.authorCastander, F. J.
dc.contributor.authorCawthon, R.
dc.contributor.authorChang, C.
dc.contributor.authorChen, N.
dc.contributor.authorChildress, M.
dc.contributor.authorChoi, A.
dc.contributor.authorConselice, C.
dc.contributor.authorCrittenden, R.
dc.contributor.authorCrocce, M.
dc.contributor.authorCunha, C. E.
dc.contributor.authorD’Andrea, C. B.
dc.contributor.authorda Costa, L. N.
dc.contributor.authorDas, R.
dc.contributor.authorDavis, T. M.
dc.contributor.authorDavis, C.
dc.contributor.authorDe Vicente, J.
dc.contributor.authorDePoy, D. L.
dc.contributor.authorDeRose, J.
dc.contributor.authorDesai, S.
dc.contributor.authorDiehl, H. T.
dc.contributor.authorDietrich, J. P.
dc.contributor.authorDodelson, S.
dc.contributor.authorDoel, P.
dc.contributor.authorDrlica-Wagner, A.
dc.contributor.authorEifler, T. F.
dc.contributor.authorElliott, A. E.
dc.contributor.authorElsner, F.
dc.contributor.authorElvin-Poole, J.
dc.contributor.authorEstrada, J.
dc.contributor.authorEvrard, A. E.
dc.contributor.authorFang, Y.
dc.contributor.authorFernandez, E.
dc.contributor.authorFerté, A.
dc.contributor.authorFinley, D. A.
dc.contributor.authorFlaugher, B.
dc.contributor.authorFosalba, P.
dc.contributor.authorFriedrich, O.
dc.contributor.authorFrieman, J.
dc.contributor.authorGarcía-Bellido, J.
dc.contributor.authorGarcia-Fernandez, M.
dc.contributor.authorGatti, M.
dc.contributor.authorGaztanaga, E.
dc.contributor.authorGerdes, D. W.
dc.contributor.authorGiannantonio, T.
dc.contributor.authorGill, M. S. S.
dc.contributor.authorGlazebrook, K.
dc.contributor.authorGoldstein, D. A.
dc.contributor.authorGruen, D.
dc.contributor.authorGruendl, R. A.
dc.contributor.authorGschwend, J.
dc.contributor.authorGutierrez, G.
dc.contributor.authorHamilton, S.
dc.contributor.authorHartley, W. G.
dc.contributor.authorHinton, S. R.
dc.contributor.authorHonscheid, K.
dc.contributor.authorHoyle, B.
dc.contributor.authorHuterer, D.
dc.contributor.authorJain, B.
dc.contributor.authorJames, D. J.
dc.contributor.authorJarvis, M.
dc.contributor.authorJeltema, T.
dc.contributor.authorJohnson, M. D.
dc.contributor.authorJohnson, M. W. G.
dc.contributor.authorKacprzak, T.
dc.contributor.authorKent, S.
dc.date.accessioned2018-12-20T21:57:27Z
dc.date.available2018-12-20T21:57:27Z
dc.date.issued2018-08-27
dc.identifier.citationT. M. C. Abbott et al. (Dark Energy Survey Collaboration). Phys. Rev. D 98, 043526 (2018). DOI:https://doi.org/10.1103/PhysRevD.98.043526en_US
dc.identifier.issn2470-0010
dc.identifier.issn2470-0029
dc.identifier.issn0035-8711
dc.identifier.issn0004-6361
dc.identifier.issn0035-8711
dc.identifier.doi10.1103/PhysRevD.98.043526
dc.identifier.urihttp://hdl.handle.net/10150/631234
dc.description.abstractWe present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg(2) of griz imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric-redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while "blind" to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat Lambda CDM and wCDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for Lambda CDM) or 7 (for wCDM) cosmological parameters including the neutrino mass density and including the 457 x 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions and from their combination obtain S-8 equivalent to sigma(8) (Omega(m)/0.3)(0.5) = 0.773(-0.020)(+0.026) and Omega(m) = 0.267(-0.017)(+0.030) for Lambda CDM; for wCDM, we find S-8 = 0.782(-0.024)(+0.036) , Omega(m) = 0.284(-0.030)(+0.033), and w = -0.82(-0.20)(+0.21) at 68% C.L. The precision of these DES Y1 constraints rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for S-8 and Omega(m) are lower than the central values from Planck for both Lambda CDM and wCDM, the Bayes factor indicates that the DES Y1 and Planck data sets are consistent with each other in the context of Lambda CDM. Combining DES Y1 with Planck, baryonic acoustic oscillation measurements from SDSS, 6dF, and BOSS and type Ia supernovae from the Joint Lightcurve Analysis data set, we derive very tight constraints on cosmological parameters: S-8 = 0.802 +/- 0.012 and Omega(m) = 0.298 +/- 0.007 in Lambda CDM and w = -1.00(-0.04)(+0.05) in wCDM. Upcoming Dark Energy Survey analyses will provide more stringent tests of the Lambda CDM model and extensions such as a time-varying equation of state of dark energy or modified gravity.en_US
dc.description.sponsorshipU.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai; Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory, Stanford University; University of Sussex; Texas A M University; OzDES Membership Consortium; National Science Foundation [AST-1138766, AST-1536171]; MINECO [AYA2015-71825, ESP2015-88861, FPA2015-68048, SEV-2012-0234, SEV-2016-0597, MDM-2015-0509,]; European Union; Centres de Recerce de Catalunya (CERCA) program of the Generalitat de Catalunya; European Research Council under the European Union's Seventh Framework Program (FP7) [240672, 291329, 306478]; Australian Research Council Centre of Excellence for All-sky Astrophysics [CE110001020]; U.S. Department of Energy, Office of Science, Office of High Energy Physics [DE-AC02-07CH11359]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]en_US
dc.language.isoenen_US
dc.publisherAMER PHYSICAL SOCen_US
dc.relation.urlhttps://link.aps.org/doi/10.1103/PhysRevD.98.043526en_US
dc.rights© 2018 American Physical Societyen_US
dc.titleDark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensingen_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Dept Physen_US
dc.identifier.journalPHYSICAL REVIEW Den_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US
dc.source.journaltitlePhysical Review D
dc.source.volume98
dc.source.issue4
refterms.dateFOA2018-12-20T21:57:28Z


Files in this item

Thumbnail
Name:
PhysRevD.98.043526.pdf
Size:
2.054Mb
Format:
PDF
Description:
Final Published version

This item appears in the following Collection(s)

Show simple item record