Measurement of the Soft-Drop Jet Mass in pp Collisions at root s=13 TeV with the ATLAS Detector
Name:
PhysRevLett.121.092001.pdf
Size:
694.3Kb
Format:
PDF
Description:
Final Published version
Author
Aaboud, M.Aad, G.
Abbott, B.
Abdinov, O.
Abeloos, B.
Abidi, S. H.
AbouZeid, O. S.
Abraham, N. L.
Abramowicz, H.
Abreu, H.
Abreu, R.
Abulaiti, Y.
Acharya, B. S.
Adachi, S.
Adamczyk, L.
Adelman, J.
Adersberger, M.
Adye, T.
Affolder, A. A.
Afik, Y.
Agheorghiesei, C.
Aguilar-Saavedra, J. A.
Ahlen, S. P.
Ahmadov, F.
Aielli, G.
Akatsuka, S.
Akerstedt, H.
Åkesson, T. P. A.
Akilli, E.
Akimov, A. V.
Alberghi, G. L.
Albert, J.
Albicocco, P.
Alconada Verzini, M. J.
Alderweireldt, S. C.
Aleksa, M.
Aleksandrov, I. N.
Alexa, C.
Alexander, G.
Alexopoulos, T.
Alhroob, M.
Ali, B.
Aliev, M.
Alimonti, G.
Alison, J.
Alkire, S. P.
Allbrooke, B. M. M.
Allen, B. W.
Allport, P. P.
Aloisio, A.
Alonso, A.
Alonso, F.
Alpigiani, C.
Alshehri, A. A.
Alstaty, M. I.
Alvarez Gonzalez, B.
Álvarez Piqueras, D.
Alviggi, M. G.
Amadio, B. T.
Amaral Coutinho, Y.
Amelung, C.
Amidei, D.
Amor Dos Santos, S. P.
Amoroso, S.
Anastopoulos, C.
Ancu, L. S.
Andari, N.
Andeen, T.
Anders, C. F.
Anders, J. K.
Anderson, K. J.
Andreazza, A.
Andrei, V.
Angelidakis, S.
Angelozzi, I.
Angerami, A.
Anisenkov, A. V.
Anjos, N.
Annovi, A.
Antel, C.
Antonelli, M.
Antonov, A.
Antrim, D. J.
Anulli, F.
Aoki, M.
Aperio Bella, L.
Arabidze, G.
Arai, Y.
Araque, J. P.
Araujo Ferraz, V.
Arce, A. T. H.
Ardell, R. E.
Arduh, F. A.
Arguin, J-F.
Argyropoulos, S.
Arik, M.
Armbruster, A. J.
Armitage, L. J.
Arnaez, O.
Arnold, H.
Affiliation
Univ Arizona, Dept PhysIssue Date
2018-08-28
Metadata
Show full item recordPublisher
AMER PHYSICAL SOCCitation
Aaboud, M & Aad, G & Abbott, B & Abdinov, O & Abeloos, B & Abidi, S. H. & AbouZeid, O. S. & Abraham, N. L. & Abramowicz, H & Abreu, Heather & Abreu, Ricardo & Abulaiti, Y & Acharya, B. S. & Adachi, S & Adamczyk, L & Adelman, J & Adersberger, Michael & Adye, T & Affolder, A. A.. (2018). Measurement of the Soft-Drop Jet Mass in pp Collisions at √ s=13 TeV with the ATLAS detector. Physical Review Letters. 121. 10.1103/PhysRevLett.121.092001.Journal
PHYSICAL REVIEW LETTERSRights
© 2018 CERN, for the ATLAS Collaboration.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross section is measured as a function of log(10)rho(2), where rho is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb(-1) of root s = 13 TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.ISSN
0031-90071079-7114
Version
Final published versionSponsors
ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, France; CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; ERDF, European Union; FP7, European Union; Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos, Thales; EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Spain; Generalitat Valenciana, Spain; Royal Society, United Kingdom; Leverhulme Trust, United KingdomAdditional Links
https://link.aps.org/doi/10.1103/PhysRevLett.121.092001ae974a485f413a2113503eed53cd6c53
10.1103/PhysRevLett.121.092001