More replenishment than priming loss of soil organic carbon with additional carbon input
dc.contributor.author | Liang, Junyi | |
dc.contributor.author | Zhou, Zhenghu | |
dc.contributor.author | Huo, Changfu | |
dc.contributor.author | Shi, Zheng | |
dc.contributor.author | Cole, James R. | |
dc.contributor.author | Huang, Lei | |
dc.contributor.author | Konstantinidis, Konstantinos T. | |
dc.contributor.author | Li, Xiaoming | |
dc.contributor.author | Liu, Bo | |
dc.contributor.author | Luo, Zhongkui | |
dc.contributor.author | Penton, C. Ryan | |
dc.contributor.author | Schuur, Edward A. G. | |
dc.contributor.author | Tiedje, James M. | |
dc.contributor.author | Wang, Ying-Ping | |
dc.contributor.author | Wu, Liyou | |
dc.contributor.author | Xia, Jianyang | |
dc.contributor.author | Zhou, Jizhong | |
dc.contributor.author | Luo, Yiqi | |
dc.date.accessioned | 2019-01-03T21:01:53Z | |
dc.date.available | 2019-01-03T21:01:53Z | |
dc.date.issued | 2018-08-09 | |
dc.identifier.citation | Liang, Junyi & Zhou, Zhenghu & Huo, Changfu & Shi, Zheng & R.Cole's, James & Huang, Lei & T. Konstantinidis, Konstantinos & Li, Xiaoming & Liu, Bo & Luo, Zhongkui & Penton, Christopher & Schuur, Edward & Tiedje, James & Wang, Yingping & Wu, Luguang & Xia, Jianyang & Zhou, Jizhong & Luo, Yiqi. (2018). More replenishment than priming loss of soil organic carbon with additional carbon input. Nature Communications. 9. 10.1038/s41467-018-05667-7. | en_US |
dc.identifier.issn | 2041-1723 | |
dc.identifier.pmid | 30093611 | |
dc.identifier.doi | 10.1038/s41467-018-05667-7 | |
dc.identifier.uri | http://hdl.handle.net/10150/631267 | |
dc.description.abstract | Increases in carbon (C) inputs to soil can replenish soil organic C (SOC) through various mechanisms. However, recent studies have suggested that the increased C input can also stimulate the decomposition of old SOC via priming. Whether the loss of old SOC by priming can override C replenishment has not been rigorously examined. Here we show, through data-model synthesis, that the magnitude of replenishment is greater than that of priming, resulting in a net increase in SOC by a mean of 32% of the added new C. The magnitude of the net increase in SOC is positively correlated with the nitrogen-to-C ratio of the added substrates. Additionally, model evaluation indicates that a two-pool interactive model is a parsimonious model to represent the SOC decomposition with priming and replenishment. Our findings suggest that increasing C input to soils likely promote SOC accumulation despite the enhanced decomposition of old C via priming. | en_US |
dc.description.sponsorship | US Department of Energy (DOE), Office of Biological and Environmental Research; Terrestrial Ecosystem Sciences grant [DE SC00114085]; Biological Systems Research on the Role of Microbial Communities in Carbon Cycling Program grants [DE-SC0004601, DE-SC0010715]; Terrestrial Ecosystem Science Scientific Focus Area (TES-SFA) at Oak Ridge National Laboratory (ORNL); US National Science Foundation (NSF) [EF 1137293, OIA-1301789]; US DOE [DE-AC05-00OR22725] | en_US |
dc.language.iso | en | en_US |
dc.publisher | NATURE PUBLISHING GROUP | en_US |
dc.relation.url | http://www.nature.com/articles/s41467-018-05667-7 | en_US |
dc.rights | © The Author(s) 2018. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License. | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | More replenishment than priming loss of soil organic carbon with additional carbon input | en_US |
dc.type | Article | en_US |
dc.contributor.department | Univ Arizona, Ctr Ecosyst Sci & Soc | en_US |
dc.identifier.journal | NATURE COMMUNICATIONS | en_US |
dc.description.note | Open access journal. | en_US |
dc.description.collectioninformation | This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu. | en_US |
dc.eprint.version | Final published version | en_US |
dc.source.journaltitle | Nature Communications | |
dc.source.volume | 9 | |
dc.source.issue | 1 | |
refterms.dateFOA | 2019-01-03T21:01:53Z |