• The Design and Application of C-band Base Station Based Multi-target Telemetry Network System

      Shiwei, Guo; Zhongjie, Wang; Xin, Zhang; Zhaohui, Huo; Chinese Flight Test Establishment (International Foundation for Telemetering, 2018-11)
      A C-band base station based multi-target telemetry network system for flight test is designed in this paper. The requirements of multi-target transmission are realized by TDMA and TDD technology. And the transmission rate of up to 50 Mbps is provided by the high efficient modulation method. An integrated air-to-ground telemetry network is built with C-band wireless two-way link. The telemetry signals of super large airspace are covered seamlessly through multiple base stations, therefore the shortage of current telemetry is solved, and the demand of multi-target and mass date transmission for flight test is satisfied. The development of the system provides technical support for the high speed data transmission of the flight test, which will lay a foundation for the construction of integrated air-to-ground test and the test network system.
    • FLIGHT TEST DATA AIRBORNE RESTRUCTURABLE FAST FROCESSING TECHNOLOGY

      Wu, Zhenhua; Wang, Jianjun; Li, Xiaoya; Chinese Flight Test Establishment (International Foundation for Telemetering, 2018-11)
      In multi-bus, long-endurance flight test, the huge test data is recorded by networked airborne testing system. After the flight, to ensure that engineers can analyze engineering data immediately, the processing platform must use limited resources quickly to complete test data processing. Because the test parameters sets on different test tasks are different, we design an airborne restructurable fast data processing system: during the flight, uploading the phased data processing configuration information through telemetry uplink in real time according to the execution state of the ongoing test task, based on these task requirements, the airborne processing system restructures its processing logic and workflow, avoiding repeated calculation of parameters, and ensuring the limited onboard computing resources can meet the needs of multitasking comprehensive flight test data processing.
    • A New Network Telemetry technique In Aviatic Flight Tests

      Xingguo, Zhang; Hong, Li; Guojin, Peng; Zanchao, Wang; Chinese Flight Test Establishment (International Foundation for Telemetering, 2018-11)
      In order to address the issue of insufficient telemetry frequencies in flight tests, a telemetry transmission solution is proposed to transmit the principal parameters and HUD video for multiple aircrafts based on bi-directional wireless network. All the key points including the wireless transmission architecture for airborne and ground integration, network resources management, and dynamic configuration of airborne test system are illustrated. The research result has been verified in flight tests, and the experimental methods and results are presented as well.
    • REAL-TIME MONITORING TECHNOLOGY OF INLET DISTORTION SIGNAL

      Huang, Ruchang; Wei, Guobo; Wang, Zhongjie; Li, Panwen; Chinese Flight Test Establishment (International Foundation for Telemetering, 2018-11)
      In the flight test, the matching compatibility of the fighter inlet and the engine is the key to the test flight of the engine performance quality. Especially at high incidence of high attack angle and over stall maneuver, the characteristics of the inlet are very important to the engine. The current traditional test scheme cannot real-time telemeter the inlet distortion signal.This paper aims at the problem by designing an embedded airborne real-time processing unit which can real-time calculate and telemetry of the inlet distortion signal. Then the results are displayed in the ground monitoring station by cloud image mode. So we can evaluate the matching performance of the inlet and engine during aircraft flight, and achieve the aim of prejudging the risk of inlet distortion.
    • Real-time Processing and Integrated Monitoring Technology for Telemetry Multi-channel Digital Video

      Yang, Zhe; Guo, Pingfan; Huo, Zhaohui; Chinese Flight Test Establishment (International Foundation for Telemetering, 2018-11)
      In flight test telemetry digital video real-time monitoring, some technical problems about single function of the video playback software, needing a dedicated player software (poor extensibility) and lacking the necessary fault diagnosis methods are analyzed.Intelligent playback technology, component video playback plug-in, ground full-link real-time status monitoring and fault diagnosis technology are adopted to realize real-time monitoring telemetry multi-channel digital video under different airborne acquisition systems.Multi-channel video images can be on-demand inserted in any flight test subjects monitoring software.At the same time, it can realize visual real-time status monitoring of the video links of each aircraft.The flight test results show that this technology fully meets the new requirements of the new model test flight for real-time monitoring of video, and greatly improves the quality and efficiency of real-time monitoring of telemetry digital video of the flight test.
    • Research on Application Technology of Intelligent Wireless Sensor Network in Flight Test

      Chen, Peng; Jiang, Hongwei; Yan, Yihong; Chinese Flight Test Establishment (International Foundation for Telemetering, 2018-11)
      Aimed at the problems of many test parameters, complicated lead wires, large additional weight, lack of flexibility and expandability as well as low level of intelligence and networkability of existing aircraft test flight test systems, with the application requirements of intelligent wireless sensor network for flight test technologies as the lead, this paper makes research on key technologies of intelligent wireless sensor network in aircraft flight test, and focuses on the synchronous acquisition system architecture, real-time protection method, and data transmission reliability checking method and the development of acquisition and recording system for wireless sensor networks based on the iNET standard for aircraft flight test. Besides, this paper also performs simulation and engine ground test verification which laid the foundation for the application of intelligent wireless sensor network technology in aircraft flight test.
    • Telemetry System Based on MESH Network and Its Application

      Guo, Pingfan; Liu, Ming; Li, Hong; Zhu, Hongxiang; Chinese Flight Test Establishment (International Foundation for Telemetering, 2018-11)
      In the flight test, the advantages of network telemetry have gradually emerged, and their application fields will also be expanded. This paper introduces a network telemetry system based on MESH net and its application in flight test, a ground station can receive telemetry signals of several planes at the same time; the components and functions of the system are described, the advantages of this network telemetry system, existing problems and suggestions on future improvements are presented.
    • A Testing Method of Measuring Time Delay of the Flight Test AFDX Avionic System Caused by Data Acquiring Network

      Wang, Jianjun; Peng, Guojin; Yan, Yihong; Chinese Flight Test Establishment (International Foundation for Telemetering, 2018-11)
      Full Duplex Switched Ethernet AFDX is gradually replacing the traditional 1553B as the architecture of the new generation avionics system. AFDX bus has the characteristic of Ethernet delay. However, special needs for measuring avionics AFDX network delay are required to meet in flight test. According to the characteristics of flight test, this paper proposes a method of data acquisition network delay measurement for AFDX avionics system to solve the puzzle of delay measurement. The experiments on a test aircraft demonstrate that the method can improve the calculation accuracy of an avionics system and it’s effective in engineering applications.