• FLIGHT SIMULATION WITH DYNAMIC AERONAUTICAL CHANNEL MODEL

      Alam, Tasmeer; Moazzami, Farzad; Dean, Richard; Morgan State University, Department of Electrical and Computer Engineering (International Foundation for Telemetering, 2018-11)
      This paper includes the design, modeling and analysis of the aeronautical channel which includes the dynamics of flight simulation. For any given flight path scenario in the cruise state it is well understood that the channel is fitted by a 2 ray model. The dynamics of this model can be generated using the two-ray ground reflection model which is based on the position, velocity, and direction of the aircraft. The dynamic aeronautical channel model includes Doppler shift and delay spread for each path of a channel model. This paper shows how each parameter is created for modelling the dynamic channel. The design of such channel model will help the telemetry community to incorporate channel dynamics in computer simulation to improve the accuracy of flight simulation in the design and pre-test stages. Further, it can provide insight to the selection of modulation, equalization and coding for such channels.
    • Hidden Markov Model (HMM) based Intrusion Detection System (IDS)

      Zegeye, Wondimu K.; Moazzami, Farzad; Dean, Richard; Morgan State University, Department of Electrical and Computer Engineering (International Foundation for Telemetering, 2018-11)
      Networked Telemetry faces the threat of intrusion like any other cyber network. In this paper, we address the problem of modeling an Intrusion Detection System (IDS) using Hidden Markov Model (HMM). It is part of a bigger objective towards capturing and analyzing network traffic to identify anomalous traffic which in turn will be used to alarm a system administrator. The network traffic analysis phase involves feature extraction, dimension reduction and vector quantization (VQ) techniques which play a significant role in large data sets as the number of data being transmitted is increasing day by day from one network to another. The IDS framework developed makes use of multi-class HMM where each of the HMM layers are trained for a specific network traffic type. In order to test the resulting model’s capability to predict anomalous traffic, the system is tested with a testing data set. Performance of the model against the KDD ‘99 dataset demonstrates accuracy greater that 99%.
    • LINK DEPENDENT ADAAPTIVE RADIO PERFORMANCE ON DYNAMIC CHANNEL

      Alam, Tasmeer; Moazzami, Farzad; Dean, Richard; Morgan State University, Engineering (International Foundation for Telemetering, 2018-11)
      This paper includes analysis of aeronautical channel dynamics in flight simulations of the Link Dependent Adaptive Radio (LDAR). LDAR system includes realistic measurement of the throughput gain with the adaptation of the modulation and coding parameters for telemetry applications. To increase the accuracy, channel dynamics have been incorporated in the simulation. Dynamic channel simulator is developed by the customized two ray ground reflection channel model including Doppler shift, delay spread, and other channel dynamics. This paper shows the comparison of the performance of LDAR using both static and dynamic channel. The impact of creating accurate simulation results with this dynamic channel simulator reaches beyond LDAR and will help the telemetry community to improve the accuracy of computer simulation in the design and pre-test stages.
    • RISK ASSESSMENT IN TELEMETRY NETWORKS: ACADEMIC NETWORK ENVIRONMENT CASE STUDY

      Odejobi, Moses; Zegeye, Wondimu; King, Ronald; Moazzami, Farzad; Dean, Richard; Oladiputo, Adebisi; Morgan State University, Department of Electrical and Computer Engineering (International Foundation for Telemetering, 2018-11)
      This paper develops and utilizes a method for analyzing, modeling and simulating cyber risks in a networked environment as part of a risk management model by incorporating an approach that will be used for the development of attacks, detection, controls from real data or assumptions. The risk assessment considers Morgan State University’s network as a case study, which can be migrated to a networked telemetry system. Recent attacks on more than 300 U.S. universities targeting university professors, students, and faculty to collect credentials of the victims’ university library accounts have been identified by the PhishLabs. This research work develops a model for cyber-attack risk assessment and countermeasures for the security of distributed and decentralized Servers resource in academic and other environments.
    • A Scalable Medical Devices Localization Service Modeling

      Zegeye, Wondimu; Moazzami, Farzad; Dean, Richard; Morgan State University, Department of Electrical and Computer Engineering (International Foundation for Telemetering, 2018-11)
      Medical applications of telemetry continue to evolve with the demand for real time networked medical data, and with minimum intrusion to the mobility of the patient. This paper presents several architectures for managing a scalable hospital’s medical devices localization service and shows how these can be represented using the Unified Modeling Language (UML) model. It targets medical devices which are equipped with wireless technologies such as WiFi, Bluetooth Low Energy (BLE), etc. which can be incorporated into a networked telemetry system. The UML modeling demonstrates a scalable medical devices localization service for a hospital which can make use of client-server and cloud based architectures. The resulting model is a step towards a practical implementation of the service in tackling several problems which can arise due to the misplacement and improper sharing of medical devices in a healthcare scenario such as hospitals.
    • SPECTRUM SHARING MAC PROTOCOL APPLICATIONS FOR THE PROPOSED 3.5 GHZ BAND

      Oyediran, David; Dean, Richard; Moazzami, Farzad; Morgan State University, Department of Electrical and Computer Engineering (International Foundation for Telemetering, 2018-11)
      Spectrum sharing between federal and commercial users is proposed by the FCC and NTIA to open up the 3.5 GHz band for wireless broadband use. This requires the detection and subsequent allocation of available licensed spectrum for temporary use by other users without interfering with incumbent signal transmission. The DoD has a documented requirement of 865 MHz by 2025 to support telemetry but only 445 MHz is presently available. This paper presents spectrum sharing opportunity and technology that will help reduce service interference between spectrum users. We developed protocol model for spectrum sharing and implemented cognitive radio media access sensing mechanism using cyclostationary feature detector (CFD). The paper demonstrates shared usage by secondary users with minimum interference and improvement in throughput by as 5 times compared to other protocols. This is an introductory work that shows the feasibility of the approach with the potential for many other factors to be considered. We suggest that with proper sensing mechanism and quiet period implementation by the unlicensed users, CSMA/CA RTS-CTS could be adopted for licensed user protection.