Hoffman, Richard W. III; GDP Space Systems (International Foundation for Telemetering, 2018-11)
      As an increasing number of telemetry range architectures move toward a TMoIP-centric distribution system, operators are being confronted with another evolving requirement to ensure future IPv6 capability and a migration path from an IPv4-based system design. In order to facilitate a better understanding of some of the challenges and opportunities that IPv6 migration presents the modern range operator, this paper endeavors to present the past decade’s experience of range TMoIP implementation in the context of the emergent IPv6 technology and requirements. An overview of a myriad of concepts such as address space allocation, device-specific implementation differences, management protocol handling, and the differences between IPv4 and IPv6 versions, will provide opportunities to discuss the implications of these issues on the successful implementation of high-availability telemetry delivery systems in an IP-based environment.

      Thom, Gary A.; GDP Space Systems (International Foundation for Telemetering, 2018-11)
      Today’s telemetry ground stations are migrating from traditional serial PCM data distribution to Telemetry over IP architectures. The Range Commanders Council has published IRIG 218-10 TELEMETRY TRANSMISSION OVER INTERNET PROTOCOL (TMoIP) STANDARD, which attempts to standardize PCM distribution over IP networks and is currently working on a revision. Ranges have begun investigating new TMoIP systems. This paper attempts to facilitate this migration by discussing the TMoIP, networking and architectural concepts that need to be considered when deploying a TMoIP system. The paper draws on the lessons learned over the previous 10 years of designing, installing, troubleshooting and optimizing telemetry data distribution over IP networks. It discusses the critical component and architectural decisions to be made and some of the pitfalls to be avoided.