The Gemini/Hubble Space Telescope Galaxy Cluster Project: Stellar Populations in the Low-redshift Reference Cluster Galaxies
Name:
Jørgensen_2018_AJ_156_224.pdf
Size:
2.716Mb
Format:
PDF
Description:
Final Published version
Affiliation
Univ Arizona, Steward ObservIssue Date
2018-11Keywords
galaxies: clusters: individual (Abell 1656/Coma, Abell 426/Perseus, Abell 2029, Abell 2142)galaxies: evolution
galaxies: stellar content
Metadata
Show full item recordPublisher
IOP PUBLISHING LTDCitation
Inger Jørgensen et al 2018 AJ 156 224Journal
ASTRONOMICAL JOURNALRights
© 2018. The American Astronomical Society. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
In order to study stellar populations and galaxy structures at intermediate and high redshift (z = 0.2-2.0) and link these properties to those of low-redshift galaxies, there is a need for well-defined local reference samples. Especially for galaxies in massive clusters, such samples are often limited to the Coma cluster galaxies. We present consistently calibrated velocity dispersions and absorption-line indices for galaxies in the central 2 R-500 x 2 R-500 of four massive clusters at z < 0.1: Abell 426/Perseus, Abell 1656/Coma, Abell 2029, and Abell 2142. The measurements are based on data from the Gemini Observatory, McDonald Observatory, and Sloan Digital Sky Survey. For bulge-dominated galaxies, the samples are 95% complete in Perseus and Coma and 74% complete in A2029 and A2142, to a limit of M-B,M-abs <= -18.5 mag. The data serve as the local reference for our studies of galaxy populations in the higher-redshift clusters that are part of the Gemini/HST Galaxy Cluster Project (GCP). We establish the scaling relations between line indices and velocity dispersions as a reference for the GCP. We derive stellar population parameters, ages, metallicities [M/H], and abundance ratios from line indices, both averaged in bins of velocity dispersion and from individual measurements for galaxies in Perseus and Coma. The zero points of relations between the stellar population parameters and the velocity dispersions limit the allowed cluster-to-cluster variation of the four clusters to +/- 0.08 dex in age, +/- 0.06 dex in [M/H], +/- 0.07 dex in [CN/Fe], and +/- 0.03 dex in [Mg/Fe].ISSN
1538-3881Version
Final published versionSponsors
Alfred P. Sloan Foundation; U.S. Department of Energy Office of ScienceAdditional Links
http://stacks.iop.org/1538-3881/156/i=5/a=224?key=crossref.cd44433a4a0f0464bdcb2454850879aeae974a485f413a2113503eed53cd6c53
10.3847/1538-3881/aae522
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Planck's dusty GEMS III. A massive lensing galaxy with a bottom-heavy stellar initial mass function at z=1.5Canameras, R.; Nesvadba, N. P. H.; Kneissl, R.; Limousin, M.; Gavazzi, R.; Scott, D.; Dole, H.; Frye, B.; Koenig, S.; Le Floc'h, E.; et al. (EDP SCIENCES S A, 2017-03-24)We study the properties of the foreground galaxy of the Ruby, the brightest gravitationally lensed high-redshift galaxy on the sub-millimeter sky as probed by the Planck satellite, and part of our sample of Planck's dusty GEMS. The Ruby consists of an Einstein ring of 1.4" diameter at z = 3.005 observed with ALMA at 0.1" resolution, centered on a faint, red, massive lensing galaxy seen with HST/WFC3, which itself has an exceptionally high redshift, z = 1.525 +/- 0.001, as confirmed with VLT/X-shooter spectroscopy. Here we focus on the properties of the lens and the lensing model obtained with LENSTOOL. The rest-frame optical morphology of this system is strongly dominated by the lens, while the Ruby itself is highly obscured, and contributes less than 10% to the photometry out to the K band. The foreground galaxy has a lensing mass of (3.70 +/- 0.35) x 10(11) M-Theta Magnification factors are between 7 and 38 for individual clumps forming two image families along the Einstein ring. We present a decomposition of the foreground and background sources in the WFC3 images, and stellar population synthesis modeling with a range of star-formation histories for Chabrier and Salpeter initial mass functions (IMFs). Only the stellar mass range obtained with the latter agrees well with the lensing mass. This is consistent with the bottom-heavy IMFs of massive high-redshift galaxies expected from detailed studies of the stellar masses and mass profiles of their low-redshift descendants, and from models of turbulent gas fragmentation. This may be the first direct constraint on the IMF in a lens at z = 1.5, which is not a cluster central galaxy.
-
Planck’s dusty GEMSCañameras, R.; Nesvadba, N.; Kneissl, R.; Frye, B.; Gavazzi, R.; Koenig, S.; Le Floc’h, E.; Limousin, M.; Oteo, I.; Scott, D.; et al. (EDP SCIENCES S A, 2017-08-23)We present an analysis of high-resolution ALMA interferometry of CO(4-3) line emission and dust continuum in the "Ruby" (PLCK_G244.8+54.9), a bright, gravitationally lensed galaxy at z = 3.0 discovered with the Planck all-sky survey. The Ruby is the brightest of Planck's dusty GEMS, a sample of 11 of the brightest gravitationally lensed high-redshift galaxies on the extragalactic sub-mm sky. We resolve the high-surface-brightness continuum and CO line emission of the Ruby in several extended clumps along a partial, nearly circular Einstein ring with 1.4 '' diameter around a massive galaxy at z = 1.5. Local star-formation intensities are up to 2000 M-circle dot yr(-1) kpc(-2), amongst the highest observed at high redshift, and clearly in the range of maximal starbursts. Gas-mass surface densities are a few x10(4) M-circle dot pc(-2). The Ruby lies at, and in part even above, the starburst sequence in the Schmidt-Kennicutt diagram, and at the limit expected for star formation that is self-regulated through the kinetic energy injection from radiation pressure, stellar winds, and supernovae. We show that these processes can also inject sufficient kinetic energy and momentum into the gas to explain the turbulent line widths, which are consistent with marginally gravitationally bound molecular clouds embedded in a critically Toomre-stable disk. The star-formation efficiency is in the range 1-10% per free-fall time, consistent with the notion that the pressure balance that sets the local star-formation law in the Milky Way may well be universal out to the highest star-formation intensities. AGN feedback is not necessary to regulate the star formation in the Ruby, in agreement with the absence of a bright AGN component in the infrared and radio regimes.
-
The Apache Point Observatory Galactic Evolution Experiment (APOGEE)Majewski, Steven R.; Schiavon, Ricardo P.; Frinchaboy, P. M.; Prieto, Carlos Allende; Barkhouser, Robert; Bizyaev, Dmitry; Blank, Basil; Brunner, Sophia; Burton, Adam; Carrera, R.; et al. (IOP PUBLISHING LTD, 2017-08-14)The Apache Point Observatory Galactic Evolution Experiment (APOGEE), one of the programs in the Sloan Digital Sky Survey III (SDSS-III), has now completed its systematic, homogeneous spectroscopic survey sampling all major populations of the Milky Way. After a three-year observing campaign on the Sloan 2.5 m Telescope, APOGEE has collected a half million high-resolution (R similar to 22,500), high signal-to-noise ratio (>100), infrared (1.51-1.70 mu m) spectra for 146,000 stars, with time series information via repeat visits to most of these stars. This paper describes the motivations for the survey and its overall design-hardware, field placement, target selection, operations-and gives an overview of these aspects as well as the data reduction, analysis, and products. An index is also given to the complement of technical papers that describe various critical survey components in detail. Finally, we discuss the achieved survey performance and illustrate the variety of potential uses of the data products by way of a number of science demonstrations, which span from time series analysis of stellar spectral variations and radial velocity variations from stellar companions, to spatial maps of kinematics, metallicity, and abundance patterns across the Galaxy and as a function of age, to new views of the interstellar medium, the chemistry of star clusters, and the discovery of rare stellar species. As part of SDSS-III Data Release 12 and later releases, all of the APOGEE data products are publicly available.