Show simple item record

dc.contributor.authorTobin, John
dc.contributor.authorLooney, Leslie W.
dc.contributor.authorLi, Zhi-Yun
dc.contributor.authorSadavoy, Sarah I.
dc.contributor.authorDunham, Michael M.
dc.contributor.authorSegura-Cox, Dominique
dc.contributor.authorKratter, Kaitlin M.
dc.contributor.authorChandler, Claire J.
dc.contributor.authorMelis, Carl
dc.contributor.authorHarris, Robert J.
dc.contributor.authorPerez, Laura
dc.date.accessioned2019-02-18T21:38:43Z
dc.date.available2019-02-18T21:38:43Z
dc.date.issued2018-11-01
dc.identifier.citationJohn J. Tobin et al 2018 ApJ 867 43en_US
dc.identifier.issn1538-4357
dc.identifier.doi10.3847/1538-4357/aae1f7
dc.identifier.urihttp://hdl.handle.net/10150/631720
dc.description.abstractWe present Atacama Large Millimeter/submillimeter Array observations of multiple protostar systems in the Perseus molecular cloud, previously detected by the Karl G. Jansky Very Large Array. We observe 17 close (<600 au separation) multiple systems at 1.3 mm in continuum and five molecular lines (i.e., (CO)-C-12, (CO)-O-18, (CO)-C-13, H2CO, SO) to characterize the circum-multiple environments in which these systems are forming. We detect at least one component in the continuum for the 17 multiple systems. In three systems one companion is not detected, and for two systems the companions are unresolved at our observed resolution. We also detect circum-multiple dust emission toward eight out of nine Class 0 multiples. Circum-multiple dust emission is not detected toward any of the eight Class I multiples. Twelve systems are detected in the dense gas tracers toward their disks/inner envelopes. For these 12 systems, we use the dense gas observations to characterize their formation mechanism. The velocity gradients in the circum-multiple gas are clearly orthogonal to the outflow directions in eight out of the 12 systems, consistent with disk fragmentation. Moreover, only two systems with separations <200 au are inconsistent with disk fragmentation, in addition to the two widest systems (>500 au). Our results suggest that disk fragmentation via gravitational instability is an important formation mechanism for close multiple systems, but further statistics are needed to better determine the relative fraction formed via this method.en_US
dc.description.sponsorshipNSF [AST-1616636, AST-1716259, AST-1814762]; Netherlands Organisation for Scientific Research (NWO) [639.041.439]; NASA [NNX14AB38G]en_US
dc.language.isoenen_US
dc.publisherIOP PUBLISHING LTDen_US
dc.relation.urlhttp://stacks.iop.org/0004-637X/867/i=1/a=43?key=crossref.dd859c1b8faa1f4bf143b30347d42a16en_US
dc.rights© 2018. The American Astronomical Society. All rights reserved.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectbinaries: generalen_US
dc.subjectISM: kinematics and dynamicsen_US
dc.subjectISM: moleculesen_US
dc.subjectstars: formationen_US
dc.subjectstars: protostarsen_US
dc.subjecttechniques: interferometricen_US
dc.titleThe VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Perseus Protostars. VI. Characterizing the Formation Mechanism for Close Multiple Systemsen_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Steward Observen_US
dc.identifier.journalASTROPHYSICAL JOURNALen_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US
dc.source.journaltitleThe Astrophysical Journal
dc.source.volume867
dc.source.issue1
dc.source.beginpage43
refterms.dateFOA2019-02-18T21:38:44Z


Files in this item

Thumbnail
Name:
Tobin_2018_ApJ_867_43.pdf
Size:
6.586Mb
Format:
PDF
Description:
Final Published version

This item appears in the following Collection(s)

Show simple item record