Show simple item record

dc.contributor.authorCais, Bryden
dc.date.accessioned2019-02-22T21:20:05Z
dc.date.available2019-02-22T21:20:05Z
dc.date.issued2018-10
dc.identifier.citationCais, B. Math. Ann. (2018) 372: 781. https://doi.org/10.1007/s00208-017-1608-1en_US
dc.identifier.issn0025-5831
dc.identifier.issn1432-1807
dc.identifier.doi10.1007/s00208-017-1608-1
dc.identifier.urihttp://hdl.handle.net/10150/631738
dc.description.abstractWe construct the Lambda-adic de Rham analogue of Hida's ordinary Lambda-adic etale cohomology and of Ohta's Lambda-adic Hodge cohomology, and by exploiting the geometry of integral models of modular curves over the cyclotomic extension of Qp, we give a purely geometric proof of the expected finiteness, control, and Lambda-adic duality theorems. Following Ohta, we then prove that our Lambda-adic module of differentials is canonically isomorphic to the space of ordinary Lambda-adic cuspforms. In the sequel (Cais, Compos Math, to appear) to this paper, we construct the crystalline counterpart to Hida's ordinary Lambda-adic etale cohomology, and employ integral p-adic Hodge theory to prove Lambda-adic comparison isomorphisms between all of these cohomologies. As applications of our work in this paper and (Cais, Compos Math, to appear), we will be able to provide a " cohomological" construction of the family of (phi, Gamma)-modules attached to Hida's ordinary Lambda-adic etale cohomology by Dee (J Algebra 235(2), 636664, 2001), as well as a new and purely geometric proof of Hida's finiteness and control theorems. We are also able to prove refinements of the main theorems in Mazur and Wiles (Compos Math 59(2): 231-264, 1986) and Ohta (J Reine Angew Math 463: 49-98, 1995).en_US
dc.description.sponsorshipNSA Young Investigator Grant [H98230-12-1-0238]; NSF RTG [DMS-0838218]en_US
dc.language.isoenen_US
dc.publisherSPRINGER HEIDELBERGen_US
dc.relation.urlhttp://link.springer.com/10.1007/s00208-017-1608-1en_US
dc.rights© Springer-Verlag GmbH Deutschland 2017en_US
dc.titleThe geometry of Hida families I: Λ-adic de Rham cohomologyen_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Dept Mathen_US
dc.identifier.journalMATHEMATISCHE ANNALENen_US
dc.description.note12 month embargo; published online: 26 December 2017en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal accepted manuscripten_US
dc.source.journaltitleMathematische Annalen
dc.source.volume372
dc.source.issue1-2
dc.source.beginpage781
dc.source.endpage844
refterms.dateFOA2018-12-26T00:00:00Z


Files in this item

Thumbnail
Name:
hidafinalv4_1_final.pdf
Size:
667.6Kb
Format:
PDF
Description:
Final Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record