Show simple item record

dc.contributor.authorMo, Weiyang
dc.contributor.authorGutterman, Craig L.
dc.contributor.authorLi, Yao
dc.contributor.authorZhu, Shengxiang
dc.contributor.authorZussman, Gil
dc.contributor.authorKilper, Daniel C.
dc.date.accessioned2019-02-25T21:41:47Z
dc.date.available2019-02-25T21:41:47Z
dc.date.issued2018-10
dc.identifier.citationWeiyang Mo, Craig L. Gutterman, Yao Li, Shengxiang Zhu, Gil Zussman, and Daniel C. Kilper, "Deep-Neural-Network-Based Wavelength Selection and Switching in ROADM Systems," J. Opt. Commun. Netw. 10, D1-D11 (2018)en_US
dc.identifier.issn1943-0620
dc.identifier.issn1943-0639
dc.identifier.doi10.1364/JOCN.10.0000D1
dc.identifier.urihttp://hdl.handle.net/10150/631743
dc.description.abstractRecent advances in software and hardware greatly improve the multi-layer control and management of reconfigurable optical add-drop multiplexer (ROADM) systems facilitating wavelength switching. However, ensuring stable performance and reliable quality of transmission (QoT) remain difficult problems for dynamic operation. Optical power dynamics that arise from a variety of physical effects in the amplifiers and transmission fiber complicate the control and performance predictions in these systems. We present a deep-neural-network-based machine learning method to predict the power dynamics of a 90-channel ROADM system from data collection and training. We further show that the trained deep neural network can recommend wavelength assignments for wavelength switching with minimal power excursions.en_US
dc.description.sponsorshipNational Science Foundation (NSF) [CNS-1650669, CNS-1423105, CNS-1650685, PFI-1601784]en_US
dc.language.isoenen_US
dc.publisherOPTICAL SOC AMERen_US
dc.relation.urlhttps://www.osapublishing.org/abstract.cfm?URI=jocn-10-10-D1en_US
dc.rights© 2018 Optical Society of America.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectMachine learningen_US
dc.subjectPower excursionsen_US
dc.subjectROADM systemsen_US
dc.subjectWavelength switchingen_US
dc.titleDeep-Neural-Network-Based Wavelength Selection and Switching in ROADM Systemsen_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Coll Opt Scien_US
dc.identifier.journalJOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKINGen_US
dc.description.note12 month embargo; published online: 8 May 2018en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal accepted manuscripten_US
dc.source.journaltitleJournal of Optical Communications and Networking
dc.source.volume10
dc.source.issue10
dc.source.beginpageD1


Files in this item

Thumbnail
Name:
DNN_R1.pdf
Size:
867.8Kb
Format:
PDF
Description:
Final Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record