Evidence for a Unique DNA-Dependent RNA Polymerase in Cereal Crops
Affiliation
Univ Arizona, Dept Mol & Cellular BiolUniv Arizona, Sch Plant Sci
Issue Date
2018-10
Metadata
Show full item recordPublisher
OXFORD UNIV PRESSCitation
Joshua T Trujillo, Arun S Seetharam, Matthew B Hufford, Mark A Beilstein, Rebecca A Mosher; Evidence for a Unique DNA-Dependent RNA Polymerase in Cereal Crops, Molecular Biology and Evolution, Volume 35, Issue 10, 1 October 2018, Pages 2454–2462, https://doi.org/10.1093/molbev/msy146Journal
MOLECULAR BIOLOGY AND EVOLUTIONRights
© The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Gene duplication is an important driver for the evolution of new genes and protein functions. Duplication of DNA-dependent RNA polymerase (Pol) II subunits within plants led to the emergence of RNA Pol IV and V complexes, each of which possess unique functions necessary for RNA-directed DNA Methylation. Comprehensive identification of Pol V subunit orthologs across the monocot radiation revealed a duplication of the largest two subunits within the grasses (Poaceae), including critical cereal crops. These paralogous Pol subunits display sequence conservation within catalytic domains, but their carboxy terminal domains differ in length and character of the Ago-binding platform, suggesting unique functional interactions. Phylogenetic analysis of the catalytic region indicates positive selection on one paralog following duplication, consistent with retention via neofunctionalization. Positive selection on residue pairs that are predicted to interact between subunits suggests that paralogous subunits have evolved specific assembly partners. Additional Pol subunits as well as Pol-interacting proteins also possess grass-specific paralogs, supporting the hypothesis that a novel Pol complex with distinct function has evolved in the grass family, Poaceae.Note
Open access articleISSN
0737-40381537-1719
PubMed ID
30053133Version
Final published versionSponsors
National Science Foundation [IOS-1546825]; National Institutes of Health [T32-GM008659]Additional Links
https://academic.oup.com/mbe/article/35/10/2454/5058059ae974a485f413a2113503eed53cd6c53
10.1093/molbev/msy146
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License.
Related articles
- Evolutionary history of plant multisubunit RNA polymerases IV and V: subunit origins via genome-wide and segmental gene duplications, retrotransposition, and lineage-specific subfunctionalization.
- Authors: Tucker SL, Reece J, Ream TS, Pikaard CS
- Issue date: 2010
- Ancient Origin and Recent Innovations of RNA Polymerase IV and V.
- Authors: Huang Y, Kendall T, Forsythe ES, Dorantes-Acosta A, Li S, Caballero-Pérez J, Chen X, Arteaga-Vázquez M, Beilstein MA, Mosher RA
- Issue date: 2015 Jul
- Evolution of plant RNA polymerase IV/V genes: evidence of subneofunctionalization of duplicated NRPD2/NRPE2-like paralogs in Viola (Violaceae).
- Authors: Marcussen T, Oxelman B, Skog A, Jakobsen KS
- Issue date: 2010 Feb 16
- Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits.
- Authors: Wang Y, Ma H
- Issue date: 2015 Sep
- Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II.
- Authors: Ream TS, Haag JR, Wierzbicki AT, Nicora CD, Norbeck AD, Zhu JK, Hagen G, Guilfoyle TJ, Pasa-Tolić L, Pikaard CS
- Issue date: 2009 Jan 30

