• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Algae-Based Sorbents for Removal of Metallic Contaminants from Semiconductor Manufacturing Wastewater: Process Modeling and Reactor Design

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_16884_sip1_m.pdf
    Size:
    6.164Mb
    Format:
    PDF
    Download
    Author
    Li, Mengling
    Issue Date
    2019
    Keywords
    Algae-based sorbents
    Gallium removal
    Semiconductor factories
    Wastewater treatment
    Advisor
    Shadman, Farhang
    Ogden, Kimberly L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Removal of various soluble metallic impurities from wastewater in semiconductor fabrication plants (fabs) is a critical issue facing the microelectronics industry. Considering the large volume of wastewater and a highly variable concentration of these contaminants, finding a robust adsorption process using a low-cost sorbent is of great value and interest to this industry. Of particular interest is the development of a flow-through abatement method for treating the process-tool effluent before it is mixed with other wastewaters. In this work, a strain of freshwater green algae (Chlorella sorokiniana), representing an algae-based sorbent, and a simulated wastewater, containing soluble gallium as the metallic impurity, are used as model compounds. The choice of gallium is based on its increased use, and the lack of related adsorption data compared to the information available for other metals such as copper and arsenic. Both batch and continuous flow operations were used in this study. Comprehensive process models were developed and validated for both batch and flow systems. These models were found to be valuable for understanding the process steps as well as for obtaining the fundamental parameters that are needed for process design and scale-up. The sorbent was found to have high adsorption capacity even at low pH values (14.1 mg/g at pH of 2.3, and 38.5 mg/g at pH of 2.8). Based on the comparison of adsorption rate and capacity with data on previously studied and conventional sorbents, such as activated carbon and ion-exchange resins, the use of this algae-based sorbent is potentially an attractive option for the removal of gallium from the process-tool wastewater. The semiconductor fab wastewater often contains differently charged metal ions to be removed. Due to their adsorption different responses to pH trends and variations, the best way to handle the adsorption treatment of the complex multicomponent wastes is by using a two-stage configuration where the two stages of the system are operated at two different pH. In this and other similar multicomponent processes, the adsorption of each component affects that of others through competition for surface sites, surface charge, and the effects of pH and ionic species in the liquid phase. Process models are developed to simulate the process kinetics and reactor configurations. The results show that the modeling and parametric study are powerful methods for the design of new systems as well as for the optimization of operation in existing systems. Comparisons of different reactor configurations shows that a two-stage fixed-bed reactor system is an effective system for the combined removal of gallium and arsenic species as well as other vastly different ionic impurities.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.