• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    An Improved Understanding of Ecohydrological and Geochemical Functioning of a Mountainous Site Using Multiple Methods and Multiple Tracers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_16684_sip1_m.pdf
    Size:
    15.05Mb
    Format:
    PDF
    Download
    Author
    Dwivedi, Ravindra
    Issue Date
    2019
    Keywords
    catchment-scale response functions
    conceptual models
    critical zone
    ecohydrological water source separation hypothesis
    endmember mixing analysis
    spectral analysis
    Advisor
    Meixner, Thomas
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    High elevation mountainous catchments are often important sources of water for downstream arid and semi-arid basins. However, a better understanding of the ecohydrological and geochemical functioning of these mountainous systems is presently limited due to sparse observations at these sites which experience extreme climatic and topographic gradients. Therefore, high density observations are needed to improve our understanding of water sources and the temporal and spatial behavior of flow paths in mountainous ecosystems. This study utilizes multi-year observations of hydrologic fluxes, storages, conservative tracers, chemical compositions and water residence times from a mountainous site located within the Santa Catalina Mountains Critical Zone Observatory (SCM-CZO), Tucson, Arizona, to first develop and evaluate competing conceptual models of seasonal streamflow generation. A conceptual model involving four endmembers (precipitation, soil water, shallow and deep groundwater) provided the best match to observations. Subsequently, the long-term isotopic and hydrometric observations for various potential source waters were used to identify sources of water that support mountainous ecosystems during both wet and dry seasons. It was found that the sources of water for both streamflow and vegetation water demand was the same, i.e., there was no evidence supporting the ecohydrological water source separation hypothesis for the selected field site. Finally, improved practical methods for estimating catchment-scale response functions such as transit time distribution (TTD) and evapotranspiration time distribution (ETTD) are presented. The proposed methods are resistant to gaps in tracer time series. It was found that a gamma type TTD best matches the observations when using either very short (e.g., δ18O) or relatively older groundwater age tracers (e.g., 3H). Furthermore, the estimated ETTD type for the field site showed a composite ETTD type with a piston flow type for low periods (<0.1 year) and a gamma type with long-tails for higher periods. Therefore, this work improves understanding of hydrologic structure and function of the CZ in a mountainous catchment in a sub-humid setting.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Hydrology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.