• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Synthesis and Application of Tunable Mo2 and W2 Tetraguanidinate Paddlewheel Complexes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_16897_sip1_m.pdf
    Size:
    43.73Mb
    Format:
    PDF
    Download
    Author
    Humphries, Matthew
    Issue Date
    2019
    Keywords
    Dimetal
    Electrochemistry
    guanidinate
    paddlewheel
    Super-electron-donor
    Advisor
    Lichtenberger, Dennis L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Embargo
    Release after 01/11/2021
    Abstract
    Super-electron-donor dimolybdenum and ditungsten tetraguanidinate paddlewheel complexes have proven to be the strongest reducing agents known. Strong single and double electron donors can be used for applications from H2 production to difficult organic transformations like C–Cl bond cleavage and crosscoupling reactions. The goal of this research was to develop accessible syntheses of the ligands and complexes, to investigate high impact applications of the Mo2 and W2 analogues, and to explore new complexes in hopes to tune their reactivity and solubility. Preparation and handling of the super-base, bicyclic guanidinate ligands and complexes have prevented extensive investigations of their applications. New reproducible syntheses for HTEhpp and W2(TEhpp)4Cl2 were developed. Interaction of the paddlewheel complex Mo2(TEhpp)4 and low concentrations of acetic acid were studied using cyclic voltammetry. Experiments show the electron deficient vacant dimetal axial site and the electron rich guanidinate core work together similar to frustrated pairs. Acetic acid protonates the guanidinate while simultaneously coordinating to the metal center. This newly discovered synergistic bonding decreases the electron donor ability of the complex preventing catalysis for the production of H2. By tuning the dimetal center to a more electron rich, 3rd row transition metal, W2(TEhpp)4, the reduction of H+ to H2 is now favored and is catalytic. Computations were used to explore the nature of these interactions. In addition to H2 production, a mechanistic study of C–Cl bond cleavage in dichloromethane by Mo2(TEhpp)4 shows a novel singlet-to-triplet crossover at the transition state. This work shows the potential for this class of complexes to 19 perform electron transfers via multiple mechanisms (e.g. atom transfer and electron transfer). Upwards of 25 new dimetal tetraguanidinate paddlewheel complexes were explored computationally for their electron donor ability. Some of the ligands have synthetic precedent. These and many others will hopefully be part of the next generation of super-electron-donor complexes.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.