Tidal dissipation in rubble-pile asteroids
dc.contributor.author | Nimmo, Francis | |
dc.contributor.author | Matsuyama, Isamu | |
dc.date.accessioned | 2019-04-24T20:45:44Z | |
dc.date.available | 2019-04-24T20:45:44Z | |
dc.date.issued | 2019-03-15 | |
dc.identifier.citation | Nimmo, F., & Matsuyama, I. (2019). Tidal dissipation in rubble-pile asteroids. Icarus, 321, 715-721. | en_US |
dc.identifier.issn | 00191035 | |
dc.identifier.doi | 10.1016/j.icarus.2018.12.012 | |
dc.identifier.uri | http://hdl.handle.net/10150/632093 | |
dc.description.abstract | We develop a simple scaling argument for frictional dissipation in rubble-pile asteroids, parameterized as an effective dissipation factor Q. This scaling is combined with a prediction (Goldreich, P., Sari, R., 2009. Tidal evolution of rubble piles. Astrophys. J. 691, 54-60) for the tidal response amplitude, parameterized by the Love number k(2). We compare the combined scaling with k(2)/Q values inferred from asteroid binaries in which the semi-major axis is determined by a balance between tidal dissipation and the binary YORP (or BYORP) effect (Jacobson, S.A., Scheeres, D.J., 2011. Long-term stable equilibria for synchronous binary asteroids. Astrophys. J. Lett. 736, L19). The k(2)/Q scaling matches the inferred values if dissipation is confined to a regolith layer of thickness similar to 30 m, similar to the available asteroid regolith thickness estimates. The scaling suggests a regolith thickness that is independent of (or decreases slightly with) increasing asteroid radius; this result is consistent with at least one model of regolith generation via impacts. | en_US |
dc.language.iso | en | en_US |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | en_US |
dc.relation.url | https://linkinghub.elsevier.com/retrieve/pii/S0019103518304500 | en_US |
dc.rights | © 2018 Elsevier Inc. All rights reserved. | en_US |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.title | Tidal dissipation in rubble-pile asteroids | en_US |
dc.type | Article | en_US |
dc.contributor.department | Univ Arizona, Lunar & Planetary Lab | en_US |
dc.identifier.journal | ICARUS | en_US |
dc.description.note | 12 month embargo; available online 12 December 2018. | en_US |
dc.description.collectioninformation | This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu. | en_US |
dc.eprint.version | Final accepted manuscript | en_US |
dc.source.journaltitle | Icarus | |
dc.source.volume | 321 | |
dc.source.beginpage | 715 | |
dc.source.endpage | 721 |