• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Responses of soil respiration to rainfall pulses in a natural grassland community on the semi-arid Loess Plateau of China

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Niu_et_al.,_2019.pdf
    Size:
    1.722Mb
    Format:
    PDF
    Description:
    Final Accepted Manuscript
    Download
    Author
    Niu, Furong
    Chen, Ji
    Xiong, Peifeng
    Wang, Zhi
    Zhang, He
    Xu, Bingcheng
    Affiliation
    Univ Arizona, Sch Nat Resources & Environm
    Issue Date
    2019-07
    Keywords
    Climate change
    Quo value
    Semi-arid grassland
    Simulated rainfall
    Soil CO2 efflux
    
    Metadata
    Show full item record
    Publisher
    ELSEVIER SCIENCE BV
    Citation
    Niu, F., Chen, J., Xiong, P., Wang, Z., Zhang, H., & Xu, B. (2019). Responses of soil respiration to rainfall pulses in a natural grassland community on the semi-arid Loess Plateau of China. Catena, 178, 199-208.
    Journal
    CATENA
    Rights
    © 2019 Elsevier B.V. All rights reserved.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Pulsed rainfall affects both aboveground vegetation dynamics and belowground biogeochemical processes, such as carbon cycling, in semi-arid regions. In order to study carbon released by soil respiration (SR) after rainfall pulses in natural grassland on the Loess Plateau, a rainfall simulation experiment was conducted in a grassland community co-dominated by a C-4 herbaceous grass [Botluiochloa ischaemum (L) Keng] and a C-3 leguminous subshrub [Lespedem davurica (Laxm.) Schindl] in the loess hilly-gully region. Soil respiration rate (R-s), soil temperature (T-s), and soil volumetric water content (S-v) were measured 1 day before and 1, 2, 3, 5, and 7 days after four rainfall treatments (ambient rainfall plus a 5 mm, 10 mm, 20 mm, and 30 mm rainfall pulse) and one control treatment (only ambient rainfall) in June and August 2013. Results showed that R-s and S-v largely increased one day after simulated rainfall > 5 mm. In June, the peak R-s under 10, 20, and 30 mm rainfall was 0.80-1.03 mu mol C m(-2) s(-1) in B. ischaemum, with a 25-62% increase compared with the control treatment, and 0.74-1.0 mu mol C m(-2) s(-1) (+51-104%) in L. davurica. In August, the peak R-s was 1.23-1.73 mu mol C m(-2) s(-1) (+23-73%) and 1.52-1.70 mu mol C m(-2) s(-1) (+81-102%) in B. ischaemum and L davurica, respectively. The magnitude and duration of the increase in SR were positively related to the rainfall size, and a more considerable increase was observed in August. There was a threshold rainfall (i.e., 5-10 mm) for triggering SR increases in both months. And different responses were found between the two species, there was more substantial SR increases in L davurica in comparison to B. ischaemum. After rainfall pulses, soil moisture and soil temperature co-regulated SR. During the relatively dry season (i.e., June), SR was negatively correlated with soil temperature and the temperature sensitivity Q(10) value of SR was small (0.5-0.6), while it changed to positively in August and the Q(10) was largely increased (3.2-4.3). Conversely, soil moisture was positively related to SR in both months and explained a large portion of the variation in SR (32-43% and 42-52% in B. ischaemum and L. davurica, respectively). These findings indicated that soil moisture was the major environmental factor in controlling SR in this grassland. Overall, our study suggests that SR response following rainfall pulses is species-specific within the grassland community and tends to be controlled by soil moisture, and these should be considered in the regional carbon budget assessment in the background of vegetation rehabilitation and rainfall pattern changes.
    Note
    24 month embargo; published online: 18 March 2019
    ISSN
    03418162
    DOI
    10.1016/j.catena.2019.03.020
    Version
    Final accepted manuscript
    Sponsors
    National Natural Science Foundation of China [41371509, 41771553]; National Key Research and Development Program of China [2016YFC0501703]
    Additional Links
    https://linkinghub.elsevier.com/retrieve/pii/S0341816219301079
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.catena.2019.03.020
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.