Rare earth elements (REY) sorption on soils of contrasting mineralogy and texture
Name:
REY sorption on soils_Dinali_Env ...
Size:
2.785Mb
Format:
PDF
Description:
Final Published Version
Author
Dinali, Guilherme SoaresRoot, Robert A
Amistadi, Mary Kay
Chorover, Jon

Lopes, Guilherme
Guilherme, Luiz Roberto Guimarães
Affiliation
Univ Arizona, Dept Soil Water & Environm SciUniv Arizona, Arizona Lab Emerging Contaminants
Issue Date
2019-07-01
Metadata
Show full item recordPublisher
PERGAMON-ELSEVIER SCIENCE LTDCitation
Dinali, G. S., Root, R. A., Amistadi, M. K., Chorover, J., Lopes, G., & Guilherme, L. R. G. (2019). Rare earth elements (REY) sorption on soils of contrasting mineralogy and texture. Environment international, 128, 279-291.Journal
ENVIRONMENT INTERNATIONALRights
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Rare earth elements (REY) are the lanthanide elements (Z = 57-71), which have an ever-growing occurrence in present-day industries, agriculture, and modern life. Consequently, environmental concentrations are expected to increase accordingly as a result of intensified utilization. Soils are an important sink for REY, yet little research has been conducted concerning activity, inputs, and lability in soil systems. This study evaluated the REY (lanthanides + yttrium) sorption and partition coefficients (Kd) in two broadly representative natural soils (A horizon), with contrasting mineralogy and organic character, formed under distinct environmental conditions: an Oxisol from Brazil and a Mollisol from the USA. Batch reactions of soils suspended in a background electrolyte solution of 5 μmoles kg-1 of Ca(NO3)2 at 1:100 solid to solution were reacted with 80 μmoles kg-1 REY added individually and in multi-REY competitive systems to evaluated adsorption after 3 h and 72 h over a wide pH range (from ca. 2 to 8). Results showed sorption was similar for all REY within each soil type when examined at the natural measured soil pH; Mollisol pH 6.85, Oxisol pH 4.35. However, REY sorption (by Kd) was nearly two-fold greater in the Mollisol compared to the Oxisol for the single REY experiments. Multi-REY competitive sorption reactions showed a decrease in Kd for both soils at 3 and 72 h, and to a greater extent for the Mollisol, indicating soil type had a strong effect on the sorption affinity of each REY. It was also observed that REY sorption increased from low to high pH (pH 2-8) in the Oxisol, and increased with pH from 2 up to the point zero charge (PZC) in the Mollisol, then stabilized. The varying REY Kd values from these two distinct and abundant soils, with and without REY competition, and over a range of pH are explained in terms of soil mineralogy (i.e., 2:1 clays in the Mollisol; oxides in the Oxisol) and organic matter content. Our findings show that soil characteristic controls sorption, precipitation, and cation exchange capacity, which are the key mechanisms for predicting REY fate and transport in the environment.Note
Open access articleISSN
1873-6750PubMed ID
31071591Version
Final published versionSponsors
CNPq [406806/2013-6]; CAPES; FAPEMIG; NSF: National Science Foundation [EAR-1331408]ae974a485f413a2113503eed53cd6c53
10.1016/j.envint.2019.04.022
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
Related articles
- Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils.
- Authors: Appel C, Ma L
- Issue date: 2002 Mar-Apr
- A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties.
- Authors: Shaheen SM, Tsadilas CD, Rinklebe J
- Issue date: 2013 Dec
- Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils.
- Authors: Leal RM, Alleoni LR, Tornisielo VL, Regitano JB
- Issue date: 2013 Aug
- Sorption of 3,4-dichloroaniline on four contrasting Greek agricultural soils and the effect of liming.
- Authors: Droulia FE, Kati V, Giannopolitis CN
- Issue date: 2011
- Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.
- Authors: Jolin WC, Goyetche R, Carter K, Medina J, Vasudevan D, MacKay AA
- Issue date: 2017 Jun 6