• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Application of Sediment Transport Theory in Environmental Science and Engineering

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_17154_sip1_m.pdf
    Size:
    2.491Mb
    Format:
    PDF
    Download
    Author
    Zhou, Kang
    Issue Date
    2019
    Keywords
    Complex piers
    Escherichia coli
    Irrigation water
    Local scour
    Sediment transport
    Turbulence
    Advisor
    Duan, Jennifer G.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Sediment exists in different water bodies and its transport can be associated with different problems such as irrigation water contamination and infrastructure integrity compromise. Applying sediment transport theory helps better understand and solve these problems. Therefore, this dissertation reports on the experimental investigation of pathogenic microorganism resuspension and bridge pier scour based on sediment transport theory. The first research focused on the study of the resuspension of Escherichia coli and MS2 bacteriophage from bed sediment in irrigation canals. A set of laboratory experiments was conducted to investigate relation between the concentration of Escherichia coli and the MS2 in moving water and flow properties and the size of bed sediment. Results showed when bed material is sandy loam, their quantity in water increases with the shear stress on bed surface. However, for a sandy bed, their presence in water has no apparent correlation with flow properties. The amount of MS2 virus in water was greater at low flow velocity and shear stress than Escherichia coli because the size of the MS2 virus is much smaller. Finally, an empirical relation was formulated for calculating the maximum allowable Escherichia coli concentration in sandy loamy bed sediment. The second research focused on the investigation local scour around a group of three piers with different sizes, spacing, and attacking angles. The results of the scour pattern showed the sheltering effect of the upstream piers and interaction between horseshoe vortex and wake vortex. Based on the phenomenological theory of turbulence flow, an analytical equation was formulated for predicting the maximum scour depth. The significance of key parameters were evaluated using the statistical F-test. The coefficients in the equation were determined by the experimental data from this and other studies. The results showed pier diameter, pier spacing, actual pier width, flow depth, Froude number, and sediment size are important parameters for determining the maximum scour depth. The third research focused on the study of the turbulence flow field around the three pier group. Mean flow vectors, turbulence intensities were analyzed based on the instantaneous velocity measured by Acoustic Doppler Vectrino Profiler. Two pier spacings of 1 and 5 times the pier diameter and two attack angles of 0 and 30 were used to study the effect of pier spacing and attack angle on the flow field. A strong sheltering effect of upstream pier in tandem alignment was observed when piers spacing is small. Horseshoe vortices around the middle and downstream piers were enhanced when the piers were in staggered alignment. Distributions of bed shear stress showed that when the scour is in equilibrium, the bed shear stress in the scour hole is smaller than the approaching bed shear stress.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Civil Engineering and Engineering Mechanics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.