• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Computational Experiments Quantifying the Scale-up of Geometric Facies Structure on Conductivity and Transport through Composite Porous Media

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_17100_sip1_m.pdf
    Size:
    12.55Mb
    Format:
    PDF
    Download
    Author
    Clark, Colin L.
    Issue Date
    2019
    Keywords
    CTMC
    Effective Conductivity
    Mechanical Dispersivity
    Non-Gaussian random fields
    Percolation
    Simulated Annealing
    Advisor
    Winter, C. Larrabee
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    We develop reduced-order, phenomenological models for effective conductivity, and for mass transport, in highly heterogeneous, composite porous media. Composite porous media consist of two or more distinct materials that occur in irregularly shaped, coherent blocks, called facies. Due to sparse sampling of the subsurface, uncertainty of facies structure is epistemic, and we conduct computational experiments that use thresholded random fields to generate realistic realizations of composite porous media. Darcy’s law is assumed to hold at local (mesoscopic) and large (macroscopic) scales, and flow is simulated through the facies structure to quantify the effects of the random, irregular configuration of the facies. Scale-up is addressed by Monte Carlo simulation. In the first chapter, simulations verify the importance of the percolation threshold, vc , which determines three regimes in effective conductivity that coincide with three corresponding regimes in the spatial variability of the flow fields. In the second chapter, further simulations motivate a continuous time Markov chain model that is able to explain anomalous dispersion in highly heterogeneous media. The model is parameterized directly from the statistics of the trajectories of synthetic particles that flow through the medium. In the third chapter, a stochastic optimization algorithm generates composite media characterized by the curvature along the facies interface, thereby controlling the connectedness of the facies structure to quantify its effects on conductivity and mechanical dispersivity in composite porous media.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Applied Mathematics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.