• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Adaptive and Non-Adaptive Evolution of the Control of Gene Expression

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_17037_sip1_m.pdf
    Size:
    4.910Mb
    Format:
    PDF
    Download
    Author
    Xiong, Kun
    Issue Date
    2019
    Keywords
    computational modeling
    drift barrier
    feed-forward loops
    Gene regulatory networks
    Advisor
    Masel, Joanna
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Non-adaptive evolution refers to evolutionary processes that are primarily driven not by natural selection, but by factors such as a bias towards generating certain mutations over others. Although non-adaptive evolution is supported by abundant data, it is obscure outside the field of evolutionary biology, potentially for historical reasons. Considering non-adaptive evolution helps us to understand the origins and roles of traits at molecular and cellular levels, where research is often dominated by adaptationist assumptions. To demonstrate that a balanced view on evolution is necessary, my thesis research asks how adaptive and non-adaptive evolution shape the control of gene expression. I start by simulating the evolution of mechanisms for quality control of gene expression. I show that the error rate associated with gene expression is determined by both the mutational bias that tends to increase the error rate and by the effective population size of the species, which determines the strength of natural selection on the error rate. This offers an explanation for the observed non-monotonic relationship between transcriptional error rate and effective population size. I next study the evolution of transcriptional regulatory networks (TRNs). The adaptationist view hypothesizes that the enrichment of a subnetwork called coherent type 1 feed-forward loops (C1-FFLs) in TRNs is an adaptation for filtering out short spurious signals, but this and similar hypotheses about other enriched subnetworks are widely questioned by evolutionary biologists, because the adaptive hypothesis fails to consider network topologies that evolve non-adaptively. To help resolve this debate, I developed a highly mechanistic computational model that captures non-adaptive factors that can shape the topology of TRNs. I show that functional C1-FFLs evolve readily under selection for filtering out a spurious signal, but not under control selection conditions. While this result supports the adaptive origin of C1-FFLs, I show that non-adaptive subnetworks can also be enriched in TRNs evolved for filtering out a spurious signal, suggesting that inferring functions of TRNs from topology alone can be problematic. A further complication comes from the fact that a subnetwork that is topologically different from C1-FFLs also evolves to filter out spurious signals. In conclusion, I argue that non-adaptive evolution can explain the origins and roles of traits that are difficult to understand under adaptationism, and that considering non-adaptive evolution is necessary to carry out scientific research in all fields of biology. Molecular and cellular biologists should actively consider non-adaptive evolution in their research.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Molecular & Cellular Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.