• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Mobile Health Analytics for Senior Care: A Data Mining and Deep Learning Approach

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_17271_sip1_m.pdf
    Size:
    5.267Mb
    Format:
    PDF
    Download
    Author
    Yu, Shuo
    Issue Date
    2019
    Keywords
    Data Mining
    Deep Learning
    Mobile Health Analytics
    Motion Sensor
    Senior Care
    Advisor
    Chen, Hsinchun
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Senior citizens confront numerous challenges to their independent living, including chronic physical health conditions and a decline in mobility. With the advancement of mobile sensing technologies, medical professionals and information systems (IS) researchers have sought to apply data mining techniques to provide precise, prompt, and personalized assessment for falls and health conditions including Parkinson’s disease. Given the societal importance of senior care, my dissertation aims to address the following four research questions: (1) how can we promptly detect senior citizens’ adverse events, e.g., falls, to alleviate consequences, (2) how can we precisely assess senior citizens’ health risks, e.g., fall risks, to provide proper interventions, (3) how can we leverage multiple data sources and assess senior citizens’ health risks in a more holistic manner, and (4) how can we profile senior citizens’ long-term health progression for more personalized care. This dissertation presents four essays to tackle these questions. The essays develop state-of-the-art data mining and deep learning techniques to address selected senior care inquiries. The first essay focuses on a novel hidden Markov model with sensor orientation calibration to detect falls. The second essay presents a two-dimensional heterogeneous convolutional neural network to precisely assess fall risks. The third essay leverages deep multisource multitask learning to achieve sensor fusion and assess multiple health risks and disease severities. The final essay develops an adaptive time-aware convolutional long short term memory model that enables long-term health profiling with time irregularities. Presented frameworks, systems, and design principles not only advance mobile health analytics and deep learning methodologies, but also guide future computational design science research in IS.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Management Information Systems
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.