Show simple item record

dc.contributor.authorHoneker, Linnea K
dc.contributor.authorNeilson, Julia W
dc.contributor.authorRoot, Robert A
dc.contributor.authorGil-Loaiza, Juliana
dc.contributor.authorChorover, Jon
dc.contributor.authorMaier, Raina M
dc.date.accessioned2019-07-03T16:52:01Z
dc.date.available2019-07-03T16:52:01Z
dc.date.issued2017-11
dc.identifier.citationHoneker, L.K., Neilson, J.W., Root, R.A. et al. Microb Ecol (2017) 74: 853. https://doi.org/10.1007/s00248-017-0998-7en_US
dc.identifier.issn1432-184X
dc.identifier.pmid28577167
dc.identifier.doi10.1007/s00248-017-0998-7
dc.identifier.urihttp://hdl.handle.net/10150/633289
dc.description.abstractPlant establishment during phytostabilization of legacy mine tailings in semiarid regions is challenging due to low pH, low organic carbon, low nutrients, and high toxic metal(loid) concentrations. Plant-associated bacterial communities are particularly important under these harsh conditions because of their beneficial services to plants. We hypothesize that bacterial colonization profiles on rhizoplane surfaces reflect deterministic processes that are governed by plant health and the root environment. The aim of this study was to identify associations between bacterial colonization patterns on buffalo grass (Buchloe dactyloides) rhizoplanes and both plant status (leaf chlorophyll and plant cover) and substrate biogeochemistry (pH, electrical conductivity, total organic carbon, total nitrogen, and rhizosphere microbial community). Buffalo grass plants from mesocosm- and field-scale phytostabilization trials conducted with tailings from the Iron King Mine and Humboldt Smelter Superfund Site in Dewey-Humboldt, Arizona, were analyzed. These tailings are extremely acidic and have arsenic and lead concentrations of 2-4 g kg-1 substrate. Bacterial communities on rhizoplanes and in rhizosphere-associated substrate were characterized using fluorescence in situ hybridization and 16S rRNA gene amplicon sequencing, respectively. The results indicated that the metabolic status of rhizoplane bacterial colonizers is significantly related to plant health. Principal component analysis revealed that root-surface Alphaproteobacteria relative abundance was associated most strongly with substrate pH and Gammaproteobacteria relative abundance associated strongly with substrate pH and plant cover. These factors also affected the phylogenetic profiles of the associated rhizosphere communities. In summary, rhizoplane bacterial colonization patterns are plant specific and influenced by plant status and rhizosphere biogeochemical conditions.en_US
dc.description.sponsorshipNational Institute of Environmental and Health Sciences (NIEHS) Superfund Research Program (SRP) [P42 ES004940, R01 ES01709]; National Science Foundation Graduate Research Fellowhip Program (NSF GRFP) [DGE-1143953]en_US
dc.language.isoenen_US
dc.publisherSPRINGERen_US
dc.relation.urlhttps://link.springer.com/article/10.1007/s00248-017-0998-7en_US
dc.rights© Springer Science+Business Media New York 2017.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject16S rRNA gene amplicon sequencingen_US
dc.subjectFISHen_US
dc.subjectPhytostabilizationen_US
dc.subjectPlant-microbe associationsen_US
dc.subjectRhizoplaneen_US
dc.subjectRhizosphereen_US
dc.titleBacterial Rhizoplane Colonization Patterns of Buchloe dactyloides Growing in Metalliferous Mine Tailings Reflect Plant Status and Biogeochemical Conditionsen_US
dc.typeArticleen_US
dc.contributor.departmentUniv Arizona, Dept Soil Water & Environm Scien_US
dc.identifier.journalMICROBIAL ECOLOGYen_US
dc.description.note12 month embargo; published online: 2 June 2017en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal accepted manuscripten_US
dc.source.journaltitleMicrobial ecology
refterms.dateFOA2018-06-02T00:00:00Z


Files in this item

Thumbnail
Name:
Bacterial_rhizoplane_colonizat ...
Size:
1.294Mb
Format:
PDF
Description:
Final Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record