• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Utilizing Micro Computed Tomography Data to Produce Implantable Scaffolds for Orthopedic Tissue Engineering

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_bme_0015_sip1_w.pdf
    Size:
    15.06Mb
    Format:
    PDF
    Download
    Author
    Tellis, Brandi Charmaine
    Issue Date
    2006
    Advisor
    Szivek, John
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Tissue engineering requires a three dimensional porous matrix that provides mechanical support and a template for new tissue growth, as well as allowing vascularization for nutrient delivery and waste product removal. Multiple methods exist for producing porous tissue engineering scaffolds from biocompatible materials. The combination of high resolution imaging systems and rapid prototyping techniques, however, has opened the door to producing scaffolds whose pore structures can match that of the tissue being repaired. A micro computed tomography scanner was used to scan trabecular bone samples from adult male canines, producing three dimensional bone models. These data sets were exported to a computer aided drawing program, where further customization of the data was performed. Additional features were added to the trabecular bone-like pore structure to allow the attachment of strain gauges to the scaffold, as well as achieve an anatomical fit with the intended surgical implant site. The customized scaffolds, made of polybutylene terephthalate (PBT), were produced using a fused deposition modeler. Morphological analysis, mechanical testing and degradation studies were performed to compare the trabecular-like scaffolds, to those with conventionally-designed pore structures. Morphological analysis revealed that the trabecular-like scaffolds matched the bone samples from which they were made in porosity only, requiring an improvement in modeler resolution to better match bone properties such as connectivity density and trabecular number. Mechanical testing showed that the trabecular-like scaffolds and simple pore structured scaffolds possessed a compressive stiffness within the range reported for human trabecular bone, with the trabecular-like scaffolds having a greater compressive stiffness than the complex pore structured scaffolds originally produced to duplicate trabecular bone. Degradation studies show that the mechanical properties and morphology of porous scaffolds made of PBT remained constant after three months soaking in a 37°C saline solution.
    Type
    text
    Thesis-Reproduction (electronic)
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Biomedical Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.